ﻻ يوجد ملخص باللغة العربية
Despite the success of reinforcement learning methods, they have yet to have their breakthrough moment when applied to a broad range of robotic manipulation tasks. This is partly due to the fact that reinforcement learning algorithms are notoriously difficult and time consuming to train, which is exacerbated when training from images rather than full-state inputs. As humans perform manipulation tasks, our eyes closely monitor every step of the process with our gaze focusing sequentially on the objects being manipulated. With this in mind, we present our Attention-driven Robotic Manipulation (ARM) algorithm, which is a general manipulation algorithm that can be applied to a range of sparse-rewarded tasks, given only a small number of demonstrations. ARM splits the complex task of manipulation into a 3 stage pipeline: (1) a Q-attention agent extracts interesting pixel locations from RGB and point cloud inputs, (2) a next-best pose agent that accepts crops from the Q-attention agent and outputs poses, and (3) a control agent that takes the goal pose and outputs joint actions. We show that current learning algorithms fail on a range of RLBench tasks, whilst ARM is successful.
Reflecting on the last few years, the biggest breakthroughs in deep reinforcement learning (RL) have been in the discrete action domain. Robotic manipulation, however, is inherently a continuous control environment, but these continuous control reinf
Deep reinforcement learning (RL) algorithms can learn complex robotic skills from raw sensory inputs, but have yet to achieve the kind of broad generalization and applicability demonstrated by deep learning methods in supervised domains. We present a
In this paper, we study the problem of learning vision-based dynamic manipulation skills using a scalable reinforcement learning approach. We study this problem in the context of grasping, a longstanding challenge in robotic manipulation. In contrast
Prediction is an appealing objective for self-supervised learning of behavioral skills, particularly for autonomous robots. However, effectively utilizing predictive models for control, especially with raw image inputs, poses a number of major challe
Humans in contrast to robots are excellent in performing fine manipulation tasks owing to their remarkable dexterity and sensorimotor organization. Enabling robots to acquire such capabilities, necessitates a framework that not only replicates the hu