ترغب بنشر مسار تعليمي؟ اضغط هنا

The ALPINE-ALMA [CII] survey: Dust mass budget in the early Universe

93   0   0.0 ( 0 )
 نشر من قبل Francesca Pozzi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dust content of normal galaxies and the dust mass density (DMD) at high-z (z>4) are unconstrained given the source confusion and the sensitivity limitations of previous observations. The ALMA Large Program to INvestigate [CII] at Early Times (ALPINE), which targeted 118 UV-selected star-forming galaxies at 4.4<z<5.9, provides a new opportunity to tackle this issue for the first time with a statistically robust dataset. We have exploited the rest-frame far-infrared (FIR) fluxes of the 23 continuum individually detected galaxies and stacks of continuum images to measure the dust content of the 118 UV-selected ALPINE galaxies. We have focused on the dust scaling relations and, by comparing them with predictions from chemical evolution models, we have probed the evolutionary stage of UV-selected galaxies at high-z. By using the observed correlation between the UV-luminosity and the dust mass, we have estimated the DMD of UV-selected galaxies at z~5, weighting the galaxies by means of the UV-luminosity function (UVLF). The derived DMD has been compared with the value we have estimated from the 10 ALPINE far-IR continuum blindly detected galaxies at the redshift of the ALPINE targets. The comparison of the observed dust scaling relations with chemical evolution models suggests that ALPINE galaxies are not likely progenitors of disc galaxies, but of intermediate and low mass proto-spheroids, resulting in present-day bulges of spiral or elliptical galaxies. Interestingly, this conclusion is in line with the independent morphological analysis, that shows that the majority (~70%) of the dust-continuum detected galaxies have a disturbed morphology. The DMD obtained at z~5 from UV-selected sources is ~30% of the value obtained from blind far-IR selected sources, showing that the UV-selection misses the most dust-rich, UV-obscured galaxies.



قيم البحث

اقرأ أيضاً

The molecular gas content of normal galaxies at z>4 is poorly constrained, because the commonly used molecular gas tracers become hard to detect. We use the [CII]158um luminosity, recently proposed as a molecular gas tracer, to estimate the molecular gas content in a large sample of main-sequence star-forming galaxies at z=4.4-5.9, with a median stellar mass of 10^9.7 Msun, drawn from the ALMA Large Program to INvestigate [CII] at Early times (ALPINE) survey. The agreement between molecular gas masses derived from [CII] luminosity, dynamical mass, and rest-frame 850um luminosity, extrapolated from the rest-frame 158um continuum, supports [CII] as a reliable tracer of molecular gas in our sample. We find a continuous decline of the molecular gas depletion timescale from z=0 to z=5.9, which reaches a mean value of (4.6+/-0.8)x10^8 yr at z~5.5, only a factor of 2-3 shorter than in present-day galaxies. This suggests a mild enhancement of star formation efficiency toward high redshifts, unless the molecular gas fraction significantly increases. Our estimates show that the rise in molecular gas fraction as reported previously, flattens off above z~3.7 to achieve a mean value of 63%+/-3 over z=4.4-5.9. This redshift evolution of the gas fraction is in line with the one of the specific star formation rate. We use multi-epoch abundance matching to follow the gas fraction evolution over cosmic time of progenitors of z=0 Milky Way-like galaxies in 10^13 Msun halos and of more massive z=0 galaxies in 10^14 Msun halos. Interestingly, the former progenitors show a monotonic decrease of the gas fraction with cosmic time, while the latter show a constant gas fraction from z=5.9 to z~2 and a decrease at z<2. We discuss three possible effects, namely outflows, halt of gas supplying, and over-efficient star formation, which may jointly contribute to the gas fraction plateau of the latter massive galaxies.
We study the efficiency of galactic feedback in the early Universe by stacking the [C II] 158 um emission in a large sample of normal star-forming galaxies at 4 < z < 6 from the ALMA Large Program to INvestigate [C II] at Early times (ALPINE) survey. Searching for typical signatures of outflows in the high-velocity tails of the stacked [C II] profile, we observe (i) deviations from a single-component Gaussian model in the combined residuals and (ii) broad emission in the stacked [C II] spectrum, with velocities of |v|<~ 500 km/s. The significance of these features increases when stacking the subset of galaxies with star formation rates (SFRs) higher than the median (SFRmed = 25 Msun/yr), thus confirming their star-formation-driven nature. The estimated mass outflow rates are comparable to the SFRs, yielding mass-loading factors of the order of unity (similarly to local star-forming galaxies), suggesting that star-formation-driven feedback may play a lesser role in quenching galaxies at z > 4. From the stacking analysis of the datacubes, we find that the combined [C II] core emission (|v|< 200 km/s) of the higher-SFR galaxies is extended on physical sizes of ~ 30 kpc (diameter scale), well beyond the analogous [C II] core emission of lower-SFR galaxies and the stacked far-infrared continuum. The detection of such extended metal-enriched gas, likely tracing circumgalactic gas enriched by past outflows, corroborates previous similar studies, confirming that baryon cycle and gas exchanges with the circumgalactic medium are at work in normal star-forming galaxies already at early epochs.
We report the detection of [CII]158um emission from a system of three closely-separated sources in the COSMOS field at z~4.56, as part of the ALMA Large Program to INvestigate CII at Early times (ALPINE). The two dominant sources are closely associat ed, both spatially (1.6~11kpc) and in velocity (~100km/s), while the third source is slightly more distant (2.8~18kpc, ~300km/s). The second strongest source features a slight velocity gradient, while no significant velocity gradient is seen in the other two sources. Using the observed [CII] luminosities, we derive a total log(SFR_[CII]/[Msol/year])=2.8+/-0.2, which may be split into contributions of 59%, 31%, and 10% from the central, east, and west sources, respectively. Comparison of these [CII] detections to recent zoom-in cosmological simulations suggests an ongoing major merger. We are thus witnessing a system in a major phase of mass build-up by merging, including an on-going major merger and an upcoming minor merger, which is expected to end up in a single massive galaxy by z~2.5.
We present dust attenuation properties of spectroscopically confirmed star forming galaxies on the main sequence at a redshift of ~4.4-5.8. Our analyses are based on the far infrared continuum observations of 118 galaxies at rest-frame 158{mu}m obtai ned with the Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [CII] at Early times (ALPINE). We study the connection between the ultraviolet (UV) spectral slope ($beta$), stellar mass (M_*), and infrared excess (IRX=L_IR/L_UV). Twenty-three galaxies are individually detected in the continuum at >3.5 sigma significance. We perform a stacking analysis using both detections and nondetections to study the average dust attenuation properties at z~4.4-5.8. The individual detections and stacks show that the IRX-$beta$ relation at z~5 is consistent with a steeper dust attenuation curve than typically found at lower redshifts (z<4). The attenuation curve is similar to or even steeper than that of the extinction curve of the Small Magellanic Cloud (SMC). This systematic change of the IRX-$beta$ relation as a function of redshift suggests an evolution of dust attenuation properties at z>4. Similarly, we find that our galaxies have lower IRX values, up to 1dex on average, at a fixed mass compared to previously studied IRX-M_* relations at z<4, albeit with significant scatter. This implies a lower obscured fraction of star formation than at lower redshifts. Our results suggest that dust properties of UV-selected star forming galaxies at z>4 are characterised by (i) a steeper attenuation curve than at z<4, and (ii) a rapidly decreasing dust obscured fraction of star formation as a function of redshift. Nevertheless, even among this UV-selected sample, massive galaxies (log M_*/$M_odot$>10) at z~5-6 already exhibit an obscured fraction of star formation of ~45%, indicating a rapid build-up of dust during the epoch of reionization.
The ALPINE-ALMA large program targets the [CII] 158 $mu$m line and the far-infrared continuum in 118 spectroscopically confirmed star-forming galaxies between z=4.4 and z=5.9. It represents the first large [CII] statistical sample built in this redsh ift range. We present details of the data processing and the construction of the catalogs. We detected 23 of our targets in the continuum. To derive accurate infrared luminosities and obscured star formation rates, we measured the conversion factor from the ALMA 158 $mu$m rest-frame dust continuum luminosity to the total infrared luminosity (L$_{rm IR}$) after constraining the dust spectral energy distribution by stacking a photometric sample similar to ALPINE in ancillary single-dish far-infrared data. We found that our continuum detections have a median L$_{rm IR}$ of 4.4$times 10^{11}$ L$_odot$. We also detected 57 additional continuum sources in our ALMA pointings. They are at lower redshift than the ALPINE targets, with a mean photometric redshift of 2.5$pm$0.2. We measured the 850 $mu$m number counts between 0.35 and 3.5 mJy, improving the current interferometric constraints in this flux density range. We found a slope break in the number counts around 3 mJy with a shallower slope below this value. More than 40 % of the cosmic infrared background is emitted by sources brighter than 0.35 mJy. Finally, we detected the [CII] line in 75 of our targets. Their median [CII] luminosity is 4.8$times$10$^8$ L$_odot$ and their median full width at half maximum is 252 km/s. After measuring the mean obscured SFR in various [CII] luminosity bins by stacking ALPINE continuum data, we find a good agreement between our data and the local and predicted SFR-L$_{rm [CII]}$ relations of De Looze et al. (2014) and Lagache et al. (2018).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا