ترغب بنشر مسار تعليمي؟ اضغط هنا

SN-Graph: a Minimalist 3D Object Representation for Classification

116   0   0.0 ( 0 )
 نشر من قبل Shen Cai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Using deep learning techniques to process 3D objects has achieved many successes. However, few methods focus on the representation of 3D objects, which could be more effective for specific tasks than traditional representations, such as point clouds, voxels, and multi-view images. In this paper, we propose a Sphere Node Graph (SN-Graph) to represent 3D objects. Specifically, we extract a certain number of internal spheres (as nodes) from the signed distance field (SDF), and then establish connections (as edges) among the sphere nodes to construct a graph, which is seamlessly suitable for 3D analysis using graph neural network (GNN). Experiments conducted on the ModelNet40 dataset show that when there are fewer nodes in the graph or the tested objects are rotated arbitrarily, the classification accuracy of SN-Graph is significantly higher than the state-of-the-art methods.



قيم البحث

اقرأ أيضاً

120 - Hui Cao , Haikuan Du , Siyu Zhang 2019
In this paper, we present an InSphereNet method for the problem of 3D object classification. Unlike previous methods that use points, voxels, or multi-view images as inputs of deep neural network (DNN), the proposed method constructs a class of more representative features named infilling spheres from signed distance field (SDF). Because of the admirable spatial representation of infilling spheres, we can not only utilize very fewer number of spheres to accomplish classification task, but also design a lightweight InSphereNet with less layers and parameters than previous methods. Experiments on ModelNet40 show that the proposed method leads to superior performance than PointNet and PointNet++ in accuracy. In particular, if there are only a few dozen sphere inputs or about 100000 DNN parameters, the accuracy of our method remains at a very high level (over 88%). This further validates the conciseness and effectiveness of the proposed InSphere 3D representation. Keywords: 3D object classification , signed distance field , deep learning , infilling sphere
126 - Yong-Lu Li , Xinpeng Liu , Han Lu 2020
Human-Object Interaction (HOI) detection lies at the core of action understanding. Besides 2D information such as human/object appearance and locations, 3D pose is also usually utilized in HOI learning since its view-independence. However, rough 3D b ody joints just carry sparse body information and are not sufficient to understand complex interactions. Thus, we need detailed 3D body shape to go further. Meanwhile, the interacted object in 3D is also not fully studied in HOI learning. In light of these, we propose a detailed 2D-3D joint representation learning method. First, we utilize the single-view human body capture method to obtain detailed 3D body, face and hand shapes. Next, we estimate the 3D object location and size with reference to the 2D human-object spatial configuration and object category priors. Finally, a joint learning framework and cross-modal consistency tasks are proposed to learn the joint HOI representation. To better evaluate the 2D ambiguity processing capacity of models, we propose a new benchmark named Ambiguous-HOI consisting of hard ambiguous images. Extensive experiments in large-scale HOI benchmark and Ambiguous-HOI show impressive effectiveness of our method. Code and data are available at https://github.com/DirtyHarryLYL/DJ-RN.
101 - Hui Cao , Jie Wang , Yuqi Liu 2020
Voxel-based 3D object classification has been frequently studied in recent years. The previous methods often directly convert the classic 2D convolution into a 3D form applied to an object with binary voxel representation. In this paper, we investiga te the reason why binary voxel representation is not very suitable for 3D convolution and how to simultaneously improve the performance both in accuracy and speed. We show that by giving each voxel a signed distance value, the accuracy will gain about 30% promotion compared with binary voxel representation using a two-layer fully connected network. We then propose a fast fully connected and convolution hybrid cascade network for voxel-based 3D object classification. This threestage cascade network can divide 3D models into three categories: easy, moderate and hard. Consequently, the mean inference time (0.3ms) can speedup about 5x and 2x compared with the state-of-the-art point cloud and voxel based methods respectively, while achieving the highest accuracy in the latter category of methods (92%). Experiments with ModelNet andMNIST verify the performance of the proposed hybrid cascade network.
This paper presents new designs of graph convolutional neural networks (GCNs) on 3D meshes for 3D object segmentation and classification. We use the faces of the mesh as basic processing units and represent a 3D mesh as a graph where each node corres ponds to a face. To enhance the descriptive power of the graph, we introduce a 1-ring face neighbourhood structure to derive novel multi-dimensional spatial and structure features to represent the graph nodes. Based on this new graph representation, we then design a densely connected graph convolutional block which aggregates local and regional features as the key construction component to build effective and efficient practical GCN models for 3D object classification and segmentation. We will present experimental results to show that our new technique outperforms state of the art where our models are shown to have the smallest number of parameters and consietently achieve the highest accuracies across a number of benchmark datasets. We will also present ablation studies to demonstrate the soundness of our design principles and the effectiveness of our practical models.
104 - Qian He , Desen Zhou , Bo Wan 2021
Reconstructing 3D object from a single image (RGB or depth) is a fundamental problem in visual scene understanding and yet remains challenging due to its ill-posed nature and complexity in real-world scenes. To address those challenges, we adopt a pr imitive-based representation for 3D object, and propose a two-stage graph network for primitive-based 3D object estimation, which consists of a sequential proposal module and a graph reasoning module. Given a 2D image, our proposal module first generates a sequence of 3D primitives from input image with local feature attention. Then the graph reasoning module performs joint reasoning on a primitive graph to capture the global shape context for each primitive. Such a framework is capable of taking into account rich geometry and semantic constraints during 3D structure recovery, producing 3D objects with more coherent structure even under challenging viewing conditions. We train the entire graph neural network in a stage-wise strategy and evaluate it on three benchmarks: Pix3D, ModelNet and NYU Depth V2. Extensive experiments show that our approach outperforms the previous state of the arts with a considerable margin.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا