ﻻ يوجد ملخص باللغة العربية
In this paper, we study a family of new quantum groups labelled by a prime number $p$ and a natural number $n$ constructed using the Morava $E$-theories. We define the quantum Frobenius homomorphisms among these quantum groups. This is a geometric generalization of Lusztigs quantum Frobenius from the quantum groups at a root of unity to the enveloping algebras. The main ingredient in constructing these Frobenii is the transchromatic character map of Hopkins, Kuhn, Ravenal, and Stapleton. As an application, we prove a Steinberg-type formula for irreducible representations of these quantum groups. Consequently, we prove that, in type $A$ the characters of certain irreducible representations of these quantum groups satisfy the formulas introduced by Lusztig in 2015.
Let $A$ be a finite abelian $p$ group of rank at least $2$. We show that $E^0(BA)/I_{tr}$, the quotient of the Morava $E$-cohomology of $A$ by the ideal generated by the image of the transfers along all proper subgroups, contains $p$-torsion. The proof makes use of transchromatic character theory.
The Morava stabilizer groups play a dominating role in chromatic stable ho-motopy theory. In fact, for suitable spectra X, for example all finite spectra, thechromatic homotopy type of X at chromatic level n textgreater{} 0 and a given prime p islarg
We construct and study an algebraic theory which closely approximates the theory of power operations for Morava E-theory, extending previous work of Charles Rezk in a way that takes completions into account. These algebraic structures are made explic
In this paper, we shall study the structure of the Grothendieck group of the category consisting of Lusztigs perverse sheaves and give a decomposition theorem of it. By using this decomposition theorem and the geometric realizations of Lusztigs symme
We describe the derived Picard groups and two-term silting complexes for quasi-hereditary algebras with two simple modules. We also describe by quivers with relations all algebras derived equivalent to a quasi-hereditary algebra with two simple modules.