ﻻ يوجد ملخص باللغة العربية
This paper considers the problem of matrix-variate logistic regression. The fundamental error threshold on estimating coefficient matrices in the logistic regression problem is found by deriving a lower bound on the minimax risk. The focus of this paper is on derivation of a minimax risk lower bound for low-rank coefficient matrices. The bound depends explicitly on the dimensions and distribution of the covariates, the rank and energy of the coefficient matrix, and the number of samples. The resulting bound is proportional to the intrinsic degrees of freedom in the problem, which suggests the sample complexity of the low-rank matrix logistic regression problem can be lower than that for vectorized logistic regression. color{red}color{black} The proof techniques utilized in this work also set the stage for development of minimax lower bounds for tensor-variate logistic regression problems.
This paper studies a tensor-structured linear regression model with a scalar response variable and tensor-structured predictors, such that the regression parameters form a tensor of order $d$ (i.e., a $d$-fold multiway array) in $mathbb{R}^{n_1 times
For even $k$, the matchings connectivity matrix $mathbf{M}_k$ encodes which pairs of perfect matchings on $k$ vertices form a single cycle. Cygan et al. (STOC 2013) showed that the rank of $mathbf{M}_k$ over $mathbb{Z}_2$ is $Theta(sqrt 2^k)$ and use
We propose a new Riemannian geometry for fixed-rank matrices that is specifically tailored to the low-rank matrix completion problem. Exploiting the degree of freedom of a quotient space, we tune the metric on our search space to the particular least
Multitask learning, i.e. taking advantage of the relatedness of individual tasks in order to improve performance on all of them, is a core challenge in the field of machine learning. We focus on matrix regression tasks where the rank of the weight ma
Matrix completion is a modern missing data problem where both the missing structure and the underlying parameter are high dimensional. Although missing structure is a key component to any missing data problems, existing matrix completion methods ofte