Phase-field modeling -- a continuous approach to discontinuities -- is gaining popularity for simulating rock fractures due to its ability to handle complex, discontinuous geometry without an explicit surface tracking algorithm. None of the existing phase-field models, however, incorporates the impact of surface roughness on the mechanical response of fractures -- such as elastic deformability and shear-induced dilation -- despite the importance of this behavior for subsurface systems. To fill this gap, here we introduce the first framework for phase-field modeling of rough rock fractures. The framework transforms a displacement-jump-based discrete constitutive model for discontinuities into a strain-based continuous model, and then casts it into a phase-field formulation for frictional interfaces. We illustrate the framework by constructing a particular phase-field form employing a rock joint model originally formulated for discrete modeling. The results obtained by the new formulation show excellent agreement with those of a well-established discrete method for a variety of problems ranging from shearing of a single discontinuity to compression of fractured rocks. Consequently, our phase-field framework provides an unprecedented bridge between a discrete constitutive model for rough discontinuities -- common in rock mechanics -- and the continuous finite element method -- standard in computational mechanics -- without any algorithm to explicitly represent discontinuity geometry.