ﻻ يوجد ملخص باللغة العربية
We propose NeuralWOZ, a novel dialogue collection framework that uses model-based dialogue simulation. NeuralWOZ has two pipelined models, Collector and Labeler. Collector generates dialogues from (1) users goal instructions, which are the user context and task constraints in natural language, and (2) systems API call results, which is a list of possible query responses for user requests from the given knowledge base. Labeler annotates the generated dialogue by formulating the annotation as a multiple-choice problem, in which the candidate labels are extracted from goal instructions and API call results. We demonstrate the effectiveness of the proposed method in the zero-shot domain transfer learning for dialogue state tracking. In the evaluation, the synthetic dialogue corpus generated from NeuralWOZ achieves a new state-of-the-art with improvements of 4.4% point joint goal accuracy on average across domains, and improvements of 5.7% point of zero-shot coverage against the MultiWOZ 2.1 dataset.
Continual learning in task-oriented dialogue systems can allow us to add new domains and functionalities through time without incurring the high cost of a whole system retraining. In this paper, we propose a continual learning benchmark for task-orie
In this paper, we propose Minimalist Transfer Learning (MinTL) to simplify the system design process of task-oriented dialogue systems and alleviate the over-dependency on annotated data. MinTL is a simple yet effective transfer learning framework, w
Dialogue policy optimisation via reinforcement learning requires a large number of training interactions, which makes learning with real users time consuming and expensive. Many set-ups therefore rely on a user simulator instead of humans. These user
We describe an approach to task-oriented dialogue in which dialogue state is represented as a dataflow graph. A dialogue agent maps each user utterance to a program that extends this graph. Programs include metacomputation operators for reference and
As the creation of task-oriented conversational data is costly, data augmentation techniques have been proposed to create synthetic data to improve model performance in new domains. Up to now, these learning-based techniques (e.g. paraphrasing) still