ﻻ يوجد ملخص باللغة العربية
Engineered dynamical maps that combine not only coherent, but also unital and dissipative transformations of quantum states, have demonstrated a number of technological applications, and promise to be a beneficial tool also in quantum thermodynamic processes. Here, we exploit control of a spin qutrit to investigate energy exchange fluctuations of an open quantum system. The qutrit engineer dynamics can be understood as an autonomous feedback process, where random measurement events condition the subsequent dissipative evolution. To analyze this dynamical process, we introduce a generalization of the Sagawa-Ueda-Tasaki relation for dissipative dynamics and verify it experimentally. Not only we characterize the efficacy of the autonomous feedback protocol, but also find that the characteristic function of energy variations $G(eta)$ becomes insensitive to the process details at a single specific value of its argument. This allows us to demonstrate that a fluctuation theorem of the Jarzynski type holds for this general dissipative feedback dynamics, while previous relations were limited to unital dynamics. Moreover, in addition to the feedback efficacy, we find a witness of unitality associated with the fixed point of the dynamics.
In the last twenty years, Rydberg atoms have become a versatile and much studied system for implementing quantum many-body systems in the framework of quantum computation and quantum simulation. However, even in the absence of coherent evolution Rydb
The out-of-equilibrium dynamics of quantum systems is one of the most fascinating problems in physics, with outstanding open questions on issues such as relaxation to equilibrium. An area of particular interest concerns few-body systems, where quantu
We introduce a discrete-time quantum dynamics on a two-dimensional lattice that describes the evolution of a $1+1$-dimensional spin system. The underlying quantum map is constructed such that the reduced state at each time step is separable. We show
We investigate the time evolution of an open quantum system described by a Lindblad master equation with dissipation acting only on a part of the degrees of freedom ${cal H}_0$ of the system, and targeting a unique dark state in ${cal H}_0$. We show
This work presents new parallelizable numerical schemes for the integration of Dissipative Particle Dynamics with Energy conservation (DPDE). So far, no numerical scheme introduced in the literature is able to correctly preserve the energy over long