ﻻ يوجد ملخص باللغة العربية
The fractional matching number of a graph G, is the maximum size of a fractional matching of G. The following sharp lower bounds for a graph G of order n are proved, and all extremal graphs are characterized in this paper. (1)The sum of the fractional matching number of a graph G and the fractional matching number of its complement is not less than n/2 , where n is not less than 2. (2) If G and its complement are non-empty, then the sum of the fractional matching number of a graph G and the fractional matching number of its complement is not less than (n+1)/2, where n is not less than 28. (3) If G and its complement have no isolated vertices, then the sum of the fractional matching number of a graph G and the fractional matching number of its complement is not less than (n+4)/2, where n is not less than 28.
Let G be a simple graph. A coloring of vertices of G is called (i) a 2-proper coloring if vertices at distance 2 receive distinct colors; (ii) an injective coloring if vertices possessing a common neighbor receive distinct colors; (iii) a square colo
A mixed graph $widetilde{G}$ is obtained by orienting some edges of $G$, where $G$ is the underlying graph of $widetilde{G}$. The positive inertia index, denoted by $p^{+}(G)$, and the negative inertia index, denoted by $n^{-}(G)$, of a mixed graph $
Building upon the notion of Gutman index $operatorname{SGut}(G)$, Mao and Das recently introduced the Steiner Gutman index by incorporating Steiner distance for a connected graph $G$. The emph{Steiner Gutman $k$-index} $operatorname{SGut}_k(G)$ of $G
A complex unit gain graph (or ${mathbb T}$-gain graph) is a triple $Phi=(G, {mathbb T}, varphi)$ (or $(G, varphi)$ for short) consisting of a simple graph $G$, as the underlying graph of $(G, varphi)$, the set of unit complex numbers $mathbb{T}= { z
We review the theory of Cheeger constants for graphs and quantum graphs and their present and envisaged applications.