ترغب بنشر مسار تعليمي؟ اضغط هنا

Global rigidity of the period mapping

113   0   0.0 ( 0 )
 نشر من قبل Benson Farb
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Benson Farb




اسأل ChatGPT حول البحث

Let ${mathcal M}_{g,n}$ denote the moduli space of smooth, genus $ggeq 1$ curves with $ngeq 0$ marked points. Let ${mathcal A}_h$ denote the moduli space of $h$-dimensional, principally polarized abelian varieties. Let $ggeq 4$ and $hleq g$. If $F:{mathcal M}_{g,n}to{mathcal A}_h$ is a nonconstant holomorphic map then $h=g$ and $F$ is the classical period mapping, assigning to a Riemann surface $X$ its Jacobian.



قيم البحث

اقرأ أيضاً

176 - Fabrizio Catanese 2014
One of the main themes of this long article is the study of projective varieties which are K(H,1)s, i.e. classifying spaces BH for some discrete group H. After recalling the basic properties of such classifying spaces, an important class of such vari eties is introduced, the one of Bagnera-de Franchis varieties, the quotients of an Abelian variety by the free action of a cyclic group. Moduli spaces of Abelian varieties and of algebraic curves enter into the picture as examples of rational K(H,1)s, through Teichmueller theory. The main thrust of the paper is to show how in the case of K(H,1)s the study of moduli spaces and deformation classes can be achieved through by now classical results concerning regularity of classifying maps. The Inoue type varieties of Bauer and Catanese are introduced and studied as a key example, and new results are shown. Motivated from this study, the moduli spaces of algebraic varieties, and especially of algebraic curves with a group of automorphisms of a given topological type are studied in detail, following new results by the author, Michael Loenne and Fabio Perroni. Finally, the action of the absolute Galois group on the moduli spaces of such K(H,1) varieties is studied. In the case of surfaces isogenous to a product, it is shown how this yields a faifhtul action on the set of connected components of the moduli space: for each Galois automorphisms of order different from 2 there is a surface S such that the Galois conjugate surface of S has fundamental group not isomorphic to the one of S.
The crystalline period map is a tool for linearizing $p$-divisible groups. It has been applied to study the Langlands correspondences, and has possible applications to the homotopy groups of spheres. The original construction of the period map is inh erently local. We present an alternative construction, giving a map on the entire moduli stack of $p$-divisbile groups, up to isogeny, which specializes to the original local construction.
Let $mathbf{p}$ be a configuration of $n$ points in $mathbb{R}^d$ for some $n$ and some $d ge 2$. Each pair of points has a Euclidean length in the configuration. Given some graph $G$ on $n$ vertices, we measure the point-pair lengths corresponding t o the edges of $G$. In this paper, we study the question of when a generic $mathbf{p}$ in $d$ dimensions will be uniquely determined (up to an unknowable Euclidean transformation) from a given set of point-pair lengths together with knowledge of $d$ and $n$. In this setting the lengths are given simply as a set of real numbers; they are not labeled with the combinatorial data that describes which point-pair gave rise to which length, nor is data about $G$ given. We show, perhaps surprisingly, that in terms of generic uniqueness, labels have no effect. A generic configuration is determined by an unlabeled set of point-pair lengths (together with $d$ and $n$) iff it is determined by the labeled edge lengths.
Almost-isometries are quasi-isometries with multiplicative constant one. Lifting a pair of metrics on a compact space gives quasi-isometric metrics on the universal cover. Under some additional hypotheses on the metrics, we show that there is no almo st-isometry between the universal covers. We show that Riemannian manifolds which are almost-isometric have the same volume growth entropy. We establish various rigidity results as applications.
121 - Fumiaki Suzuki 2015
We prove that every smooth complete intersection X defined by s hypersurfaces of degree d_1, ... , d_s in a projective space of dimension d_1 + ... + d_s is birationally superrigid if 5s +1 is at most 2(d_1 + ... + d_s + 1)/sqrt{d_1...d_s}. In partic ular, X is non-rational and Bir(X)=Aut(X). We also prove birational superrigidity of singular complete intersections with similar numerical condition. These extend the results proved by Tommaso de Fernex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا