ﻻ يوجد ملخص باللغة العربية
The $H^m$-conforming virtual elements of any degree $k$ on any shape of polytope in $mathbb R^n$ with $m, ngeq1$ and $kgeq m$ are recursively constructed by gluing conforming virtual elements on faces in a universal way. For the lowest degree case $k=m$, the set of degrees of freedom only involves function values and derivatives up to order $m-1$ at the vertices of the polytope. The inverse inequality and several norm equivalences for the $H^m$-conforming virtual elements are rigorously proved. The $H^m$-conforming virtual elements are then applied to discretize a polyharmonic equation with a lower order term. With the help of the interpolation error estimate and norm equivalences, the optimal error estimates are derived for the $H^m$-conforming virtual element method.
Several div-conforming and divdiv-conforming finite elements for symmetric tensors on simplexes in arbitrary dimension are constructed in this work. The shape function space is first split as the trace space and the bubble space. The later is further
Edge (or Nedelec) finite elements are theoretically sound and widely used by the computational electromagnetics community. However, its implementation, specially for high order methods, is not trivial, since it involves many technicalities that are n
We develop a geometrically intrinsic formulation of the arbitrary-order Virtual Element Method (VEM) on polygonal cells for the numerical solution of elliptic surface partial differential equations (PDEs). The PDE is first written in covariant form u
We present a class of discretisation spaces and H(div)-conformal elements that can be built on any polytope. Bridging the flexibility of the Virtual Element spaces towards the elements shape with the divergence properties of the Raviart-Thomas elemen
We establish a new H2 Korns inequality and its discrete analog, which greatly simplify the construction of nonconforming elements for a linear strain gradient elastic model. The Specht triangle [41] and the NZT tetrahedron [45] are analyzed as two ty