ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational corrections to two-loop beta function in quantum electrodynamics

68   0   0.0 ( 0 )
 نشر من قبل Andre Lehum
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we use the framework of effective field theory to couple Einsteins Gravity to Quantum Electrodynamics (QED) and determine the gravitational corrections to the two-loop beta function of the electric charge. Our results indicate that gravitational corrections do not alter the running behavior of the electric charge; on the contrary, we observe that it gives a positive contribution to the beta function, making the electric charge grow faster. The opposite occurs to the $lambda$ beta function in the Einstein-Scalar-QED system, where at one-loop order we observe that gravity gives a negative contribution to the $lambda$ beta function, indicating that, if the scalar particle has a mass a few orders below Planck scale, $lambda$ can be asymptotically free.



قيم البحث

اقرأ أيضاً

The Maxwell-Chern-Simons gauge theory with charged scalar fields is analyzed at two loop level. The effective potential for the scalar fields is derived in the closed form, and studied both analytically and numerically. It is shown that the U(1) symm etry is spontaneously broken in the massless scalar theory. Dimensional transmutation takes place in the Coleman-Weinberg limit in which the Maxwell term vanishes. We point out the subtlety in defining the pure Chern-Simons scalar electrodynamics and show that the Coleman-Weinberg limit must be taken after renormalization. Renormalization group analysis of the effective potential is also given at two loop.
342 - J.A. Gracey 2020
We renormalize a six dimensional cubic theory to four loops in the MSbar scheme where the scalar is in a bi-adjoint representation. The underlying model was originally derived in a problem relating to gravity being a double copy of Yang-Mills theory. As a field theory in its own right we find that it has a curious property in that while unexpectedly there is no one loop contribution to the $beta$-function the two loop coefficient is negative. It therefore represents an example where asymptotic freedom is determined by the two loop term of the $beta$-function. We also examine a multi-adjoint cubic theory in order to see whether this is a more universal property of these models.
154 - D. M. Ghilencea 2018
Higgs inflation and $R^2$-inflation (Starobinsky model) are two limits of the same quantum model, hereafter called Starobinsky-Higgs. We analyse the two-loop action of the Higgs-like scalar $phi$ in the presence of: 1) non-minimal coupling ($xi$) and 2) quadratic curvature terms. The latter are generated at the quantum level with $phi$-dependent couplings ($tildealpha$) even if their tree-level couplings ($alpha$) are tuned to zero. Therefore, the potential always depends on both Higgs field $phi$ and scalaron $rho$, hence multi-field inflation is a quantum consequence. The effects of the quantum (one- and two-loop) corrections on the potential $hat W(phi,rho)$ and on the spectral index are discussed, showing that the Starobinsky-Higgs model is in general stable in their presence. Two special cases are also considered: first, for a large $xi$ in the quantum action one can integrate $phi$ and generate a refined Starobinsky model which contains additional terms $xi^2 R^2ln^p (xi vert Rvert/mu^2)$, $p=1,2$ ($mu$ is the subtraction scale). These generate corrections linear in the scalaron to the usual Starobinsky potential and a running scalaron mass. Second, for a small fixed Higgs field $phi^2 ll M_p^2/xi$ and a vanishing classical coefficient of the $R^2$-term, we show that the usual Starobinsky inflation is generated by the quantum corrections alone, for a suitable non-minimal coupling ($xi$).
In this paper we present the complete two-loop vertex corrections to scalar and pseudo-scalar Higgs boson production for general colour factors for the gauge group ${rm SU(N)}$ in the limit where the top quark mass gets infinite. We derive a general formula for the vertex correction which holds for conserved and non conserved operators. For the conserved operator we take the electromagnetic vertex correction as an example whereas for the non conserved operators we take the two vertex corrections above. Our observations for the structure of the pole terms $1/epsilon^4$, $1/epsilon^3$ and $1/epsilon^2$ in two loop order are the same as made earlier in the literature for electromagnetism. However we also elucidate the origin of the second order single pole term which is equal to the second order singular part of the anomalous dimension plus a universal function which is the same for the quark and the gluon. [3mm]
Two and three loop alpha corrections are calculated for Kasner and Schwarzschild metrics, and their T-duals, in the bosonic string theory. These metrics are used to obtain the two and three loop alpha corrections to T-duality. It is noted in particul ar that the inclusion of alpha corrections and the requirement of consistency with the alpha-corrected T-duality for the Kasner and Schwarzschild metrics enables one to fix uniquely the covariant form of the T-duality rules at three loops. As a generalization of the T-dual of the Schwarzschild geometry a class of massless geometries is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا