ترغب بنشر مسار تعليمي؟ اضغط هنا

Reversible optical-microwave quantum conversion assisted by optomechanical dynamically-dark modes

145   0   0.0 ( 0 )
 نشر من قبل Le-Man Kuang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a dynamically-dark-mode (DDM) scheme to realize the reversible quantum conversion between microwave and optical photons in an electro-optomechanical (EOM) model. It is shown that two DDMs appear at certain times during the dynamical evolution of the EOM model. It is demonstrated that the DDMs can induce two kinds of reversible and highly efficient quantum conversion between the microwave and optical fields, the conditional quantum conversion (CQC) and the entanglement-assisted quantum conversion (EAQC). The CQC happens at the condition of vanishing of the initial-state mean value of one of the microwave and optical fields, and only depends on the coupling ratio of the system under consideration. The EAQC occurs in the presence of the initial-state entanglement between the microwave and optical fields. It is found that the EAQC can be manipulated by engineering the initial-state entanglement and the coupling ratio. It is indicated that it is possible to realize the entanglement-enhanced (or suppressed) quantum conversion through controlling the phase of the initial-state parameter. Our work highlights the power of generating reversible and highly efficient quantum conversion between microwave and optical photons by the DDMs.



قيم البحث

اقرأ أيضاً

We describe a reversible quantum interface between an optical and a microwave field using a hybrid device based on their common interaction with a micro-mechanical resonator in a superconducting circuit. We show that, by employing state-of-the-art op to-electro-mechanical devices, one can realise an effective source of (bright) two-mode squeezing with an optical idler (signal) and a microwave signal, which can be used for high-fidelity transfer of quantum states between optical and microwave fields by means of continuous variable teleportation.
In recent development of quantum technologies, a frequency conversion of quantum signals has been studied widely. We investigate the optic-microwave entanglement that is generated by applying an electro-optomechanical frequency conversion scheme to o ne mode in an optical two-mode squeezed vacuum state. We quantify entanglement of the converted two-mode Gaussian state, where surviving entanglement of the state is analyzed with respect to the parameters of the electro-optomechanical system. Furthermore, we show that there exists an upper bound for the entanglement that survives after the conversion of highly entangled optical states. Our study provides a theoretical platform for a practical quantum illumination system.
319 - H. Ian , Z. R. Gong , Yu-xi Liu 2008
We theoretically study a cavity filled with atoms, which provides the optical-mechanical interaction between the modified cavity photonic field and a movable mirror at one end. We show that the cavity field ``dresses these atoms, producing two types of polaritons, effectively enhancing the radiation pressure of the cavity field upon the end mirror, as well as establishing an additional squeezing mode of the end mirror. This squeezing produces an adiabatic entanglement, which is absent in usual vacuum cavities, between the oscillating mirror and the rest of the system. We analyze the entanglement and quantify it using the Loschmidt echo and fidelity.
We experimentally demonstrate microwave control of the motional state of a trapped ion placed in a state-dependent potential generated by a running optical lattice. Both the optical lattice depth and the running lattice frequency provide tunability o f the spin-motion coupling strength. The spin-motional coupling is exploited to demonstrate sideband cooling of a Yb171 ion to the ground state of motion.
We propose a scheme able to generate stationary continuous variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a micro-mechanical resonator. We show that when both cavities are intensely driv en one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and opto-mechanical entanglement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا