ﻻ يوجد ملخص باللغة العربية
The Gaussian Process with a deep kernel is an extension of the classic GP regression model and this extended model usually constructs a new kernel function by deploying deep learning techniques like long short-term memory networks. A Gaussian Process with the kernel learned by LSTM, abbreviated as GP-LSTM, has the advantage of capturing the complex dependency of financial sequential data, while retaining the ability of probabilistic inference. However, the deep kernel Gaussian Process has not been applied to forecast the conditional returns and volatility in financial market to the best of our knowledge. In this paper, grid search algorithm, used for performing hyper-parameter optimization, is integrated with GP-LSTM to predict both the conditional mean and volatility of stock returns, which are then combined together to calculate the conditional Sharpe Ratio for constructing a long-short portfolio. The experiments are performed on a dataset covering all constituents of Shenzhen Stock Exchange Component Index. Based on empirical results, we find that the GP-LSTM model can provide more accurate forecasts in stock returns and volatility, which are jointly evaluated by the performance of constructed portfolios. Further sub-period analysis of the experiment results indicates that the superiority of GP-LSTM model over the benchmark models stems from better performance in highly volatile periods.
Gaussian processes offer an attractive framework for predictive modeling from longitudinal data, i.e., irregularly sampled, sparse observations from a set of individuals over time. However, such methods have two key shortcomings: (i) They rely on ad
The history of research in finance and economics has been widely impacted by the field of Agent-based Computational Economics (ACE). While at the same time being popular among natural science researchers for its proximity to the successful methods of
The ultimate value of theories of the fundamental mechanisms comprising the asset price in financial systems will be reflected in the capacity of such theories to understand these systems. Although the models that explain the various states of financ
We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrel
The model describing market dynamics after a large financial crash is considered in terms of the stochastic differential equation of Ito. Physically, the model presents an overdamped Brownian particle moving in the nonstationary one-dimensional poten