ﻻ يوجد ملخص باللغة العربية
The emerging quantum technologies rely on our ability to establish and control quantum systems in non-classical states, exhibiting entanglement and quantum coherence. It is thus crucial to understand how entanglement and coherence can be created in the most efficient way. In this work we study optimal ways to create a large amount of quantum coherence via quantum channels. For this, we compare different scenarios, where the channel is acting on an incoherent state, on states which have coherence, and also on subsystems of multipartite quantum states. We show that correlations in multipartite systems do not enhance the ability of a quantum channel to create coherence. We also study the ability of quantum channels to destroy coherence, proving that a channel can destroy more coherence when acting on a subsystem of a bipartite state. Crucially, we also show that this phenomenon can only be observed when the total state is entangled. Our results significantly simplify the evaluation of coherence generating capacity, which we also discuss.
We investigate the coherence of quantum channels using the Choi-Jamiol{}kowski isomorphism. The relation between the coherence and the purity of the channel respects a duality relation. It characterizes the allowed values of coherence when the channe
Recently it was demonstrated that long-lived quantum coherence exists during excitation energy transport in photosynthesis. It is a valid question up to which length, time and mass scales quantum coherence may extend, how to one may detect this coher
Based on the resource theory for quantifying the coherence of quantum channels, we introduce a new coherence quantifier for quantum channels via maximum relative entropy. We prove that the maximum relative entropy for coherence of quantum channels is
We define the quantum-incoherent relative entropy of coherence ($mathcal{QI}$ REC) of quantum channels in the framework of the resource theory by using the Choi-Jamiolkowsky isomorphism. Coherence-breaking channels are introduced as free operations a
Originated from the superposition principle in quantum mechanics, coherence has been extensively studied as a kind important resource in quantum information processing. We investigate the distinguishability of coherence-breaking channels with the hel