ﻻ يوجد ملخص باللغة العربية
A novel algorithm named Perturbed Prox-Preconditioned SPIDER (3P-SPIDER) is introduced. It is a stochastic variancereduced proximal-gradient type algorithm built on Stochastic Path Integral Differential EstimatoR (SPIDER), an algorithm known to achieve near-optimal first-order oracle inequality for nonconvex and nonsmooth optimization. Compared to the vanilla prox-SPIDER, 3P-SPIDER uses preconditioned gradient estimators. Preconditioning can either be applied explicitly to a gradient estimator or be introduced implicitly as in applications to the EM algorithm. 3P-SPIDER also assumes that the preconditioned gradients may (possibly) be not known in closed analytical form and therefore must be approximated which adds an additional degree of perturbation. Studying the convergence in expectation, we show that 3P-SPIDER achieves a near-optimal oracle inequality O(n^(1/2) /epsilon) where n is the number of observations and epsilon the target precision even when the gradient is estimated by Monte Carlo methods. We illustrate the algorithm on an application to the minimization of a penalized empirical loss.
Incremental Expectation Maximization (EM) algorithms were introduced to design EM for the large scale learning framework by avoiding the full data set to be processed at each iteration. Nevertheless, these algorithms all assume that the conditional e
Several issues in machine learning and inverse problems require to generate discrete data, as if sampled from a model probability distribution. A common way to do so relies on the construction of a uniform probability distribution over a set of $N$ p
We propose a new system identification method, called Sign-Perturbed Sums (SPS), for constructing non-asymptotic confidence regions under mild statistical assumptions. SPS is introduced for linear regression models, including but not limited to FIR s
We analyze the non-asymptotic convergence rate of the multiplicative gradient (MG) algorithm for the log-optimal investment problems, and show that it exhibits $O(1/t)$ convergence rates, in both ergodic and non-ergodic senses.
We analyse the reconstruction error of principal component analysis (PCA) and prove non-asymptotic upper bounds for the corresponding excess risk. These bounds unify and improve existing upper bounds from the literature. In particular, they give orac