ﻻ يوجد ملخص باللغة العربية
Transfer learning can speed up training in machine learning and is regularly used in classification tasks. It reuses prior knowledge from other tasks to pre-train networks for new tasks. In reinforcement learning, learning actions for a behavior policy that can be applied to new environments is still a challenge, especially for tasks that involve much planning. Sokoban is a challenging puzzle game. It has been used widely as a benchmark in planning-based reinforcement learning. In this paper, we show how prior knowledge improves learning in Sokoban tasks. We find that reusing feature representations learned previously can accelerate learning new, more complex, instances. In effect, we show how curriculum learning, from simple to complex tasks, works in Sokoban. Furthermore, feature representations learned in simpler instances are more general, and thus lead to positive transfers towards more complex tasks, but not vice versa. We have also studied which part of the knowledge is most important for transfer to succeed, and identify which layers should be used for pre-training.
When faced with learning challenging new tasks, humans often follow sequences of steps that allow them to incrementally build up the necessary skills for performing these new tasks. However, in machine learning, models are most often trained to solve
Despite significant progress in general AI planning, certain domains remain out of reach of current AI planning systems. Sokoban is a PSPACE-complete planning task and represents one of the hardest domains for current AI planners. Even domain-specifi
In biological learning, data are used to improve performance not only on the current task, but also on previously encountered and as yet unencountered tasks. In contrast, classical machine learning starts from a blank slate, or tabula rasa, using dat
Learning a policy capable of moving an agent between any two states in the environment is important for many robotics problems involving navigation and manipulation. Due to the sparsity of rewards in such tasks, applying reinforcement learning in the
The objective of transfer reinforcement learning is to generalize from a set of previous tasks to unseen new tasks. In this work, we focus on the transfer scenario where the dynamics among tasks are the same, but their goals differ. Although general