ﻻ يوجد ملخص باللغة العربية
In this study, we present a novel approach along with the needed computational strategies for efficient and scalable feature engineering of the crystal structure in compounds of different chemical compositions. This approach utilizes a versatile and extensible framework for the quantification of a three-dimensional (3-D) voxelized crystal structure in the form of 2-point spatial correlations of multiple atomic attributes and performs principal component analysis to extract the low-dimensional features that could be used to build surrogate models for material properties of interest. An application of the proposed feature engineering framework is demonstrated on a case study involving the prediction of the formation energies of crystalline compounds using two vastly different surrogate model building strategies - local Gaussian process regression and neural networks. Specifically, it is shown that the top 25 features (i.e., principal component scores) identified by the proposed framework serve as good regressors for the formation energy of the crystalline substance for both model building strategies.
Harnessing the recent advance in data science and materials science, it is feasible today to build predictive models for materials properties. In this study, we employ the data of high-throughput quantum mechanics calculations based on 170,714 inorga
High-throughput density-functional calculations of solids are extremely time consuming. As an alternative, we here propose a machine learning approach for the fast prediction of solid-state properties. To achieve this, LSDA calculations are used as t
We propose an approach for exploiting machine learning to approximate electronic fields in crystalline solids subjected to deformation. Strain engineering is emerging as a widely used method for tuning the properties of materials, and this requires r
Drive towards improved performance of machine learning models has led to the creation of complex features representing a database of condensed matter systems. The complex features, however, do not offer an intuitive explanation on which physical attr
The half-Heusler compound has drawn attention in a variety of fields as a candidate material for thermoelectric energy conversion and spintronics technology. This is because it has various electronic structures, such as semi-metals, semiconductors, a