ﻻ يوجد ملخص باللغة العربية
Probability proportional to size (PPS) sampling schemes with a target sample size aim to produce a sample comprising a specified number $n$ of items while ensuring that each item in the population appears in the sample with a probability proportional to its specified weight (also called its size). These two objectives, however, cannot always be achieved simultaneously. Existing PPS schemes prioritize control of the sample size, violating the PPS property if necessary. We provide a new PPS scheme that allows a different trade-off: our method enforces the PPS property at all times while ensuring that the sample size never exceeds the target value $n$. The sample size is exactly equal to $n$ if possible, and otherwise has maximal expected value and minimal variance. Thus we bound the sample size, thereby avoiding storage overflows and helping to control the time required for analytics over the sample, while allowing the user complete control over the sample contents. The method is both simple to implement and efficient, being a one-pass streaming algorithm with an amortized processing time of $O(1)$ per item.
We present a new design and inference method for estimating population size of a hidden population best reached through a link-tracing design. The strategy involves the Rao-Blackwell Theorem applied to a sufficient statistic markedly different from t
Importance sampling is used to approximate Bayes rule in many computational approaches to Bayesian inverse problems, data assimilation and machine learning. This paper reviews and further investigates the required sample size for importance sampling
Sequential Multiple Assignment Randomized Trials (SMARTs) are considered the gold standard for estimation and evaluation of treatment regimes. SMARTs are typically sized to ensure sufficient power for a simple comparison, e.g., the comparison of two
A new approach to estimate population size based on a stratified link-tracing sampling design is presented. The method extends on the Frank and Snijders (1994) approach by allowing for heterogeneity in the initial sample selection procedure. Rao-Blac
A new strategy is introduced for estimating population size and networked population characteristics. Sample selection is based on a multi-wave snowball sampling design. A generalized stochastic block model is posited for the populations network grap