ترغب بنشر مسار تعليمي؟ اضغط هنا

Implications for the Hubble tension from the ages of the oldest astrophysical objects

109   0   0.0 ( 0 )
 نشر من قبل Sunny Vagnozzi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the ages of old astrophysical objects (OAO) in the redshift range $0 lesssim z lesssim 8$ as stringent tests of the late-time cosmic expansion history. Since the age of the Universe at any redshift is inversely proportional to $H_0$, requiring that the Universe be older than the oldest objects it contains at any redshift, provides an upper limit on $H_0$. Using a combination of galaxies imaged from the CANDELS program and various high-$z$ quasars, we construct an age-redshift diagram of $gtrsim 100$ OAO up to $z sim 8$. Assuming the $Lambda$CDM model at late times, we find the 95%~confidence level upper limit $H_0<73.2,{rm km}/{rm s}/{rm Mpc}$, in slight disagreement with a host of local $H_0$ measurements. Taken at face value, and assuming that the OAO ages are reliable, this suggests that ultimately a combination of pre- and post-recombination ($z lesssim 10$) new physics might be required to reconcile cosmic ages with early-time and local $H_0$ measurements. In the context of the Hubble tension, our results motivate the study of either combined global pre- and post-recombination modifications to $Lambda$CDM, or local new physics which only affects the local $H_0$ measurements.



قيم البحث

اقرأ أيضاً

148 - Sunny Vagnozzi 2021
New physics increasing the expansion rate just prior to recombination is among the least unlikely solutions to the Hubble tension, and would be expected to leave an important signature in the early Integrated Sachs-Wolfe (eISW) effect, a source of Co smic Microwave Background (CMB) anisotropies arising from the time-variation of gravitational potentials when the Universe was not completely matter dominated. Why, then, is there no clear evidence for new physics from the CMB alone, and why does the $Lambda$CDM model fit CMB data so well? These questions and the vastness of the Hubble tension theory model space motivate general consistency tests of $Lambda$CDM. I perform an eISW-based consistency test of $Lambda$CDM introducing the parameter $A_{rm eISW}$, which rescales the eISW contribution to the CMB power spectra. A fit to Planck CMB data yields $A_{rm eISW}=0.988 pm 0.027$, in perfect agreement with the $Lambda$CDM expectation $A_{rm eISW}=1$, and posing an important challenge for early-time new physics, which I illustrate in a case study focused on early dark energy (EDE). I explicitly show that the increase in $omega_c$ needed for EDE to preserve the fit to the CMB, which has been argued to worsen the fit to weak lensing and galaxy clustering measurements, is specifically required to lower the amplitude of the eISW effect, which would otherwise exceed $Lambda$CDMs prediction by $approx 20%$: this is a generic problem beyond EDE and likely applying to most models enhancing the expansion rate around recombination. Early-time new physics models invoked to address the Hubble tension are therefore faced with the significant challenge of making a similar prediction to $Lambda$CDM for the eISW effect, while not degrading the fit to other measurements in doing so.
Braneworld models with induced gravity exhibit phantom-like behaviour of the effective equation of state of dark energy. They can, therefore, naturally accommodate higher values of $H_0$, preferred by recent local measurements, while satisfying the C MB constraints. We test the background evolution in such phantom braneworld scenarios with the current observational datasets. We find that the phantom braneworld prefers a higher value of $H_0$ even without the R19 prior, thereby providing a much better fit to the local measurements. Although this braneworld model cannot fully satisfy all combinations of cosmological observables, among existing dark energy candidates the phantom brane provides one of the most compelling explanations of cosmic evolution.
It is shown, from the two independent approaches of McCrea-Milne and of Zeldovich, that one can fully recover the set equations corresponding to the relativistic equations of the expanding universe of Friedmann-Lemaitre-Robertson-Walker geometry. Alt hough similar, the Newtonian and relativistic set of equations have a principal difference in the content and hence define two flows, local and global ones, thus naturally exposing the Hubble tension at the presence of the cosmological constant Lambda. From this, we obtain absolute constraints on the lower and upper values for the local Hubble parameter, sqrt{Lambda c^2/3} simeq 56.2$ and sqrt{Lambda c^2} simeq 97.3 (km/sec Mpc^{-1}), respectively. The link to the so-called maximum force--tension issue in cosmological models is revealed.
The Hubble tension can be significantly eased if there is an early component of dark energy that becomes active around the time of matter-radiation equality. Early dark energy models suffer from a coincidence problem -- the physics of matter-radiatio n equality and early dark energy are completely disconnected, so some degree of fine-tuning is needed in order for them to occur nearly simultaneously. In this paper we propose a natural explanation for this coincidence. If the early dark energy scalar couples to neutrinos then it receives a large injection of energy around the time that neutrinos become non-relativistic. This is precisely when their temperature is of order their mass, which, coincidentally, occurs around the time of matter-radiation equality. Neutrino decoupling therefore provides a natural trigger for early dark energy by displacing the field from its minimum just before matter-radiation equality. We discuss various theoretical aspects of this proposal, potential observational signatures, and future directions for its study.
We re-analyze the Cepheid data used to infer the value of $H_0$ by calibrating SnIa. We do not enforce a universal value of the empirical Cepheid calibration parameters $R_W$ (Cepheid Wesenheit color-luminosity parameter) and $M_H^{W}$ (Cepheid Wesen heit H-band absolute magnitude). Instead, we allow for variation of either of these parameters for each individual galaxy. We also consider the case where these parameters have two universal values: one for low galactic distances $D<D_c$ and one for high galactic distances $D>D_c$ where $D_c$ is a critical transition distance. We find hints for a $3sigma$ level mismatch between the low and high galactic distance parameter values. We then use AIC and BIC criteria to compare and rank the following types of models: Base models: Universal values for $R_W$ and $M_H^{W}$ (no parameter variation), I Individual fitted galactic $R_W$ with a universal fitted $M_H^{W}$, II Universal fixed $R_W$ with individual fitted galactic $M_H^{W}$, III Universal fitted $R_W$ with individual fitted galactic $M_H^{W}$, IV Two universal fitted $R_W$ (near and far) with one universal fitted $M_H^{W}$, V Universal fitted $R_W$ with two universal fitted $M_H^{W}$ (near and far), VI Two universal fitted $R_W$ with two universal fitted $M_H^{W}$ (near and far). We find that the AIC and BIC criteria consistently favor model IV instead of the commonly used Base model where no variation is allowed for the Cepheid empirical parameters. The best fit value of the SnIa absolute magnitude $M_B$ and of $H_0$ implied by the favored model IV is consistent with the inverse distance ladder calibration based on the CMB sound horizon $H_0=67.4pm 0.5,km,s^{-1},Mpc^{-1}$. Thus in the context of the favored model IV the Hubble crisis is not present. This model may imply the presence of a fundamental physics transition taking place at a time more recent than $100,Myrs$ ago.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا