ﻻ يوجد ملخص باللغة العربية
It is well known that CS can boost massive random access protocols. Usually, the protocols operate in some overloaded regime where the sparsity can be exploited. In this paper, we consider a different approach by taking an orthogonal FFT base, subdivide its image into appropriate sub-channels and let each subchannel take only a fraction of the load. To show that this approach can actually achieve the full capacity we provide i) new concentration inequalities, and ii) devise a sparsity capture effect, i.e where the sub-division can be driven such that the activity in each each sub-channel is sparse by design. We show by simulations that the system is scalable resulting in a coarsely 30-fold capacity increase.
Motivated by applications in unsourced random access, this paper develops a novel scheme for the problem of compressed sensing of binary signals. In this problem, the goal is to design a sensing matrix $A$ and a recovery algorithm, such that the spar
In this paper, we propose a frequency-time division network (FreqTimeNet) to improve the performance of deep learning (DL) based OFDM channel estimation. This FreqTimeNet is designed based on the orthogonality between the frequency domain and the tim
Grant-free random access is a promising protocol to support massive access in beyond fifth-generation (B5G) cellular Internet-of-Things (IoT) with sporadic traffic. Specifically, in each coherence interval, the base station (BS) performs joint activi
Large communication networks, e.g. Internet of Things (IoT), are known to be vulnerable to co-channel interference. One possibility to address this issue is the use of orthogonal multiple access (OMA) techniques. However, due to a potentially very lo
This paper analyzes the impact of non-Gaussian multipath component (MPC) amplitude distributions on the performance of Compressed Sensing (CS) channel estimators for OFDM systems. The number of dominant MPCs that any CS algorithm needs to estimate in