ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a Universal NLG for Dialogue Systems and Simulators with Future Bridging

154   0   0.0 ( 0 )
 نشر من قبل Philipp Ennen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In a dialogue system pipeline, a natural language generation (NLG) unit converts the dialogue direction and content to a corresponding natural language realization. A recent trend for dialogue systems is to first pre-train on large datasets and then fine-tune in a supervised manner using datasets annotated with application-specific features. Though novel behaviours can be learned from custom annotation, the required effort severely bounds the quantity of the training set, and the application-specific nature limits the reuse. In light of the recent success of data-driven approaches, we propose the novel future bridging NLG (FBNLG) concept for dialogue systems and simulators. The critical step is for an FBNLG to accept a future user or system utterance to bridge the present context towards. Future bridging enables self supervised training over annotation-free datasets, decoupled the training of NLG from the rest of the system. An FBNLG, pre-trained with massive datasets, is expected to apply in classical or new dialogue scenarios with minimal adaptation effort. We evaluate a prototype FBNLG to show that future bridging can be a viable approach to a universal few-shot NLG for task-oriented and chit-chat dialogues.



قيم البحث

اقرأ أيضاً

One of the difficulties in training dialogue systems is the lack of training data. We explore the possibility of creating dialogue data through the interaction between a dialogue system and a user simulator. Our goal is to develop a modelling framewo rk that can incorporate new dialogue scenarios through self-play between the two agents. In this framework, we first pre-train the two agents on a collection of source domain dialogues, which equips the agents to converse with each other via natural language. With further fine-tuning on a small amount of target domain data, the agents continue to interact with the aim of improving their behaviors using reinforcement learning with structured reward functions. In experiments on the MultiWOZ dataset, two practical transfer learning problems are investigated: 1) domain adaptation and 2) single-to-multiple domain transfer. We demonstrate that the proposed framework is highly effective in bootstrapping the performance of the two agents in transfer learning. We also show that our method leads to improvements in dialogue system performance on complete datasets.
138 - Lu Chen , Zhi Chen , Bowen Tan 2019
Dialogue policy plays an important role in task-oriented spoken dialogue systems. It determines how to respond to users. The recently proposed deep reinforcement learning (DRL) approaches have been used for policy optimization. However, these deep mo dels are still challenging for two reasons: 1) Many DRL-based policies are not sample-efficient. 2) Most models dont have the capability of policy transfer between different domains. In this paper, we propose a universal framework, AgentGraph, to tackle these two problems. The proposed AgentGraph is the combination of GNN-based architecture and DRL-based algorithm. It can be regarded as one of the multi-agent reinforcement learning approaches. Each agent corresponds to a node in a graph, which is defined according to the dialogue domain ontology. When making a decision, each agent can communicate with its neighbors on the graph. Under AgentGraph framework, we further propose Dual GNN-based dialogue policy, which implicitly decomposes the decision in each turn into a high-level global decision and a low-level local decision. Experiments show that AgentGraph models significantly outperform traditional reinforcement learning approaches on most of the 18 tasks of the PyDial benchmark. Moreover, when transferred from the source task to a target task, these models not only have acceptable initial performance but also converge much faster on the target task.
207 - Yangming Li , Kaisheng Yao 2020
End-to-end neural networks have achieved promising performances in natural language generation (NLG). However, they are treated as black boxes and lack interpretability. To address this problem, we propose a novel framework, heterogeneous rendering m achines (HRM), that interprets how neural generators render an input dialogue act (DA) into an utterance. HRM consists of a renderer set and a mode switcher. The renderer set contains multiple decoders that vary in both structure and functionality. For every generation step, the mode switcher selects an appropriate decoder from the renderer set to generate an item (a word or a phrase). To verify the effectiveness of our method, we have conducted extensive experiments on 5 benchmark datasets. In terms of automatic metrics (e.g., BLEU), our model is competitive with the current state-of-the-art method. The qualitative analysis shows that our model can interpret the rendering process of neural generators well. Human evaluation also confirms the interpretability of our proposed approach.
Machine learning approaches for building task-oriented dialogue systems require large conversational datasets with labels to train on. We are interested in building task-oriented dialogue systems from human-human conversations, which may be available in ample amounts in existing customer care center logs or can be collected from crowd workers. Annotating these datasets can be prohibitively expensive. Recently multiple annotated task-oriented human-machine dialogue datasets have been released, however their annotation schema varies across different collections, even for well-defined categories such as dialogue acts (DAs). We propose a Universal DA schema for task-oriented dialogues and align existing annotated datasets with our schema. Our aim is to train a Universal DA tagger (U-DAT) for task-oriented dialogues and use it for tagging human-human conversations. We investigate multiple datasets, propose manual and automated approaches for aligning the different schema, and present results on a target corpus of human-human dialogues. In unsupervised learning experiments we achieve an F1 score of 54.1% on system turns in human-human dialogues. In a semi-supervised setup, the F1 score increases to 57.7% which would otherwise require at least 1.7K manually annotated turns. For new domains, we show further improvements when unlabeled or labeled target domain data is available.
Generating fluent natural language responses from structured semantic representations is a critical step in task-oriented conversational systems. Avenues like the E2E NLG Challenge have encouraged the development of neural approaches, particularly se quence-to-sequence (Seq2Seq) models for this problem. The semantic representations used, however, are often underspecified, which places a higher burden on the generation model for sentence planning, and also limits the extent to which generated responses can be controlled in a live system. In this paper, we (1) propose using tree-structured semantic representations, like those used in traditional rule-based NLG systems, for better discourse-level structuring and sentence-level planning; (2) introduce a challenging dataset using this representation for the weather domain; (3) introduce a constrained decoding approach for Seq2Seq models that leverages this representation to improve semantic correctness; and (4) demonstrate promising results on our dataset and the E2E dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا