Power-Efficient Wireless Streaming of Multi-Quality Tiled 360 VR Video in MIMO-OFDMA Systems


الملخص بالإنكليزية

In this paper, we study the optimal wireless streaming of a multi-quality tiled 360 virtual reality (VR) video from a multi-antenna server to multiple single-antenna users in a multiple-input multiple-output (MIMO)-orthogonal frequency division multiple access (OFDMA) system. In the scenario without user transcoding, we jointly optimize beamforming and subcarrier, transmission power, and rate allocation to minimize the total transmission power. This problem is a challenging mixed discretecontinuous optimization problem. We obtain a globally optimal solution for small multicast groups, an asymptotically optimal solution for a large antenna array, and a suboptimal solution for the general case. In the scenario with user transcoding, we jointly optimize the quality level selection, beamforming, and subcarrier, transmission power, and rate allocation to minimize the weighted sum of the average total transmission power and the transcoding power. This problem is a two-timescale mixed discrete-continuous optimization problem, which is even more challenging than the problem for the scenario without user transcoding. We obtain a globally optimal solution for small multicast groups, an asymptotically optimal solution for a large antenna array, and a low-complexity suboptimal solution for the general case. Finally, numerical results demonstrate the significant gains of proposed solutions over the existing solutions. significant gains of proposed solutions over the existing solutions.

تحميل البحث