ﻻ يوجد ملخص باللغة العربية
With the advent of big data across multiple high-impact applications, we are often facing the challenge of complex heterogeneity. The newly collected data usually consist of multiple modalities and characterized with multiple labels, thus exhibiting the co-existence of multiple types of heterogeneity. Although state-of-the-art techniques are good at modeling the complex heterogeneity with sufficient label information, such label information can be quite expensive to obtain in real applications, leading to sub-optimal performance using these techniques. Inspired by the capability of contrastive learning to utilize rich unlabeled data for improving performance, in this paper, we propose a unified heterogeneous learning framework, which combines both weighted unsupervised contrastive loss and weighted supervised contrastive loss to model multiple types of heterogeneity. We also provide theoretical analyses showing that the proposed weighted supervised contrastive loss is the lower bound of the mutual information of two samples from the same class and the weighted unsupervised contrastive loss is the lower bound of the mutual information between the hidden representation of two views of the same sample. Experimental results on real-world data sets demonstrate the effectiveness and the efficiency of the proposed method modeling multiple types of heterogeneity.
Contrastive learning applied to self-supervised representation learning has seen a resurgence in recent years, leading to state of the art performance in the unsupervised training of deep image models. Modern batch contrastive approaches subsume or s
Contrastive learning (CL) is effective in learning data representations without label supervision, where the encoder needs to contrast each positive sample over multiple negative samples via a one-vs-many softmax cross-entropy loss. However, conventi
Deep neural nets typically perform end-to-end backpropagation to learn the weights, a procedure that creates synchronization constraints in the weight update step across layers and is not biologically plausible. Recent advances in unsupervised contra
Contrastive learning is one of the fastest growing research areas in machine learning due to its ability to learn useful representations without labeled data. However, contrastive learning is susceptible to shortcuts - i.e., it may learn shortcut fea
Recent breakthroughs in self-supervised learning show that such algorithms learn visual representations that can be transferred better to unseen tasks than joint-training methods relying on task-specific supervision. In this paper, we found that the