ﻻ يوجد ملخص باللغة العربية
Photon-mediated interactions between atomic systems are the cornerstone of quantum information transfer. They can arise via coupling to a common electromagnetic mode or by quantum interference. This can manifest in cooperative light-matter coupling, yielding collective rate enhancements such as those at the heart of superradiance, or remote entanglement via measurement-induced path erasure. Here, we report coherent control of cooperative emission arising from two distant but indistinguishable solid-state emitters due to path erasure. The primary signature of cooperative emission, the emergence of bunching at zero-delay in an intensity correlation experiment, is used to characterise the indistinguishability of the emitters, their dephasing, and the degree of correlation in the joint system which can be coherently controlled. In a stark departure from a pair of uncorrelated emitters, we observe photon statistics resembling that of a weak coherent state in Hong-Ou-Mandel type interference measurements. Our experiments establish new techniques to control and characterize cooperative behaviour between matter qubits using the full quantum optics toolbox, a key stepping stone on the route to realising large-scale quantum photonic networks.
The desire to produce high-quality single photons for applications in quantum information science has lead to renewed interest in exploring solid-state emitters in the weak excitation regime. Under these conditions it is expected that photons are coh
We study the temporal correlations of the field emitted by an electromagnetic resonator coupled to a mesoscopic number of two-level emitters that are incoherently pumped by a weak external drive. We solve the master equation of the system for increas
We apply our recently developed theory of frequency-filtered and time-resolved N-photon correlations to study the two-photon spectra of a variety of systems of increasing complexity: single mode emitters with two limiting statistics (one harmonic osc
Single photons are the natural link between the nodes of a quantum network: they coherently propagate and interact with many types of quantum bits including natural and artificial atoms. Ideally, one atom should deterministically control the state of
We characterize the coherent dynamics of a two-level quantum emitter driven by a pair of symmetrically-detuned phase-locked pulses. The promise of dichromatic excitation is to spectrally isolate the excitation laser from the quantum emission, enablin