ﻻ يوجد ملخص باللغة العربية
In spintronic devices, the two main approaches to actively control the electrons spin degree of freedom involve either static magnetic or electric fields. An alternative avenue relies on the application of optical fields to generate spin currents, which promises to bolster spin-device performance allowing for significantly faster and more efficient spin logic. To date, research has mainly focused on the optical injection of spin currents through the photogalvanic effect, and little is known about the direct optical control of the intrinsic spin splitting. Here, to explore the all-optical manipulation of a materials spin properties, we consider the Rashba effect at a semiconductor interface. The Rashba effect has long been a staple in the field of spintronics owing to its superior tunability, which allows the observation of fully spin-dependent phenomena, such as the spin-Hall effect, spin-charge conversion, and spin-torque in semiconductor devices. In this work, by means of time and angle-resolved photoemission spectroscopy (TR-ARPES), we demonstrate that an ultrafast optical excitation can be used to manipulate the Rashba-induced spin splitting of a two-dimensional electron gas (2DEG) engineered at the surface of the topological insulator Bi$_{2}$Se$_{3}$. We establish that light-induced photovoltage and charge carrier redistribution -- which in concert modulate the spin-orbit coupling strength on a sub-picosecond timescale -- can offer an unprecedented platform for achieving all optically-driven THz spin logic devices.
We show here theoretically and experimentally that a Rashba-split electron state inside a ferromagnet can efficiently convert a dynamical spin accumulation into an electrical voltage. The effect is understood to stem from the Rashba splitting but wit
Gallium nitride (GaN) has emerged as an essential semiconductor material for energy-efficient lighting and electronic applications owing to its large direct bandgap of 3.4 eV. Present GaN/AlGaN heterostructures seemingly feature an inherently existin
We investigated the gate control of a two-dimensional electron gas (2DEG) confined to InSb quantum wells with an Al2O3 gate dielectric formed by atomic layer deposition on a surface layer of Al0.1In0.9Sb or InSb. The wider bandgap of Al0.1In0.9Sb com
We designed and performed low temperature DC transport characterization studies on two-dimensional electron gases confined in lattice-matched In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As quantum wells grown by molecular beam epitaxy on InP subst
We have observed cyclotron resonance in a high-mobility GaAs/AlGaAs two-dimensional electron gas by using the techniques of terahertz time-domain spectroscopy combined with magnetic fields. From this, we calculate the real and imaginary parts of the