ﻻ يوجد ملخص باللغة العربية
Let $A subset mathbb{Z}^d$ be a finite set. It is known that $NA$ has a particular size ($vert NAvert = P_A(N)$ for some $P_A(X) in mathbb{Q}[X]$) and structure (all of the lattice points in a cone other than certain exceptional sets), once $N$ is larger than some threshold. In this article we give the first effective upper bounds for this threshold for arbitrary $A$. Such explicit results were only previously known in the special cases when $d=1$, when the convex hull of $A$ is a simplex or when $vert Avert = d+2$, results which we improve.
When defining the amount of additive structure on a set it is often convenient to consider certain sumsets; Calculating the cardinality of these sumsets can elucidate the sets underlying structure. We begin by investigating finite sets of perfect squ
We determine the asymptotics of the number of independent sets of size $lfloor beta 2^{d-1} rfloor$ in the discrete hypercube $Q_d = {0,1}^d$ for any fixed $beta in [0,1]$ as $d to infty$, extending a result of Galvin for $beta in [1-1/sqrt{2},1]$. M
In this note, by the umbra calculus method, the Sun and Zagiers congruences involving the Bell numbers and the derangement numbers are generalized to the polynomial cases. Some special congruences are also provided.
We establish a congruence on sums of central $q$-binomial coefficients. From this $q$-congruence, we derive the divisibility of the $q$-trinomial coefficients introduced by Andrews and Baxter.
Let $mathcal{S}$ be a finite cyclic semigroup written additively. An element $e$ of $mathcal{S}$ is said to be idempotent if $e+e=e$. A sequence $T$ over $mathcal{S}$ is called {sl idempotent-sum free} provided that no idempotent of $mathcal{S}$ can