ﻻ يوجد ملخص باللغة العربية
Starting from 2003, a large number of the so-called exotic hadrons, such as $X(3872)$ and $D_{s0}^*(2317)$, were discovered experimentally. Since then, understanding the nature of these states has been a central issue both theoretically and experimentally. As many of these states are located close to two hadron thresholds, they are believed to be molecular states or at least contain large molecular components. We argue that if they are indeed molecular states, in the way that the deuteron is a bound state of proton and neutron, then molecular states of three or more hadrons are likely, in the sense that atomic nuclei are bound states of nucleons. Following this conjecture, we study the likely existence of $DDK$, $Dbar{D}K$, and $Dbar{D}^{*}K$ molecular states. We show that within the theoretical uncertainties of the two-body interactions deduced, they most likely exist. Furthermore, we predict their strong decays to help guide future experimental searches. In addition, we show that the same approach can indeed reproduce some of the known three-body systems from the two-body inputs, such as the deuteron-triton and the $Lambda(1405)$-$bar{K}NN$ systems.
We investigate the exotic $OmegaOmega$ dibaryon states with $J^P=0^+$ and $2^+$ in a molecular picture. We construct the scalar and tensor $Omega$$Omega$ molecular interpolating currents and calculate their masses within the method of QCD sum rules.
In two recent reactions by Belle producing $Dbar D$ and $Dbar D^*$ meson pairs, peaks above threshold have been measured in the differential cross sections, possibly indicating new resonances in these channels. We want to study such reactions from th
The exciting discovery by LHCb of the $P_c(4312)^+$ and $P_c(4450)^+$ pentaquarks, or the suggestion of a tetraquark nature for the $Z_c(3900)$ state seen at BESIII and Belle, have triggered a lot of activity in the field of hadron physics, with new
The present status of the LHC anomalies found in exclusive semileptonic $bto sell^+ell^-$ decays is discussed with special emphasis on the exclusive 4-body angular distribution $B to K^*(to Kpi)ell^+ell^-$. The treatment of hadronic uncertainties in
We analyze two recent reactions of Belle, producing $Dbar D$ and $Dbar D^*$ states that have an enhancement of the invariant $Dbar D$, $Dbar D^*$ mass distribution close to threshold, from the point of view that they might be indicative of the existe