ﻻ يوجد ملخص باللغة العربية
Learning behavior mechanism is widely anticipated in managed settings through the formal syllabus. However, heading for learning stimulus whilst daily mobility practices through urban transit is the novel feature in learning sciences. Theory of planned behavior (TPB), technology acceptance model (TAM), and service quality of transit are conceptualized to assess the learning behavioral intention (LBI) of commuters in Greater Kuala Lumpur. An online survey was conducted to understand the LBI of 117 travelers who use the technology to engage in the informal learning process during daily commuting. The results explored that all the model variables i.e., perceived ease of use, perceived usefulness, service quality, and subjective norms are significant predictors of LBI. The perceived usefulness of learning during traveling and transit service quality has a vibrant impact on LBI. The research will support the informal learning mechanism from commuters point of view. The study is a novel contribution to transport and learning literature that will open the new prospect of research in urban mobility and its connotation with personal learning and development.
As the use of machine learning (ML) models in product development and data-driven decision-making processes became pervasive in many domains, peoples focus on building a well-performing model has increasingly shifted to understanding how their model
In this paper, we investigate the suitability of state-of-the-art representation learning methods to the analysis of behavioral similarity of moving individuals, based on CDR trajectories. The core of the contribution is a novel methodological framew
Curiosity is the strong desire to learn or know more about something or someone. Since learning is often a social endeavor, social dynamics in collaborative learning may inevitably influence curiosity. There is a scarcity of research, however, focusi
Smartphone-based contact-tracing apps are a promising solution to help scale up the conventional contact-tracing process. However, low adoption rates have become a major issue that prevents these apps from achieving their full potential. In this pape
Algorithmic systems---from rule-based bots to machine learning classifiers---have a long history of supporting the essential work of content moderation and other curation work in peer production projects. From counter-vandalism to task routing, basic