Analysis of Low-Density Parity-Check Codes over Finite Integer Rings for the Lee Channel


الملخص بالإنكليزية

We study the performance of low-density parity-check (LDPC) codes over finite integer rings, over two channels that arise from the Lee metric. The first channel is a discrete memory-less channel (DMC) matched to the Lee metric. The second channel adds to each codeword an error vector of constant Lee weight, where the error vector is picked uniformly at random from the set of vectors of constant Lee weight. It is shown that the marginal conditional distribution of the two channels coincides, in the limit of large blocklengths. The performance of selected LDPC code ensembles is analyzed by means of density evolution and finite-length simulations, with belief propagation decoding and with a low-complexity symbol message passing algorithm.

تحميل البحث