ترغب بنشر مسار تعليمي؟ اضغط هنا

Explaining the Cabibbo Angle Anomaly and Lepton Flavour Universality Violation in Tau Decays With a Singly-Charged Scalar Singlet

311   0   0.0 ( 0 )
 نشر من قبل Fiona Kirk
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Fiona Kirk




اسأل ChatGPT حول البحث

The singly charged $SU(2)_L$ singlet scalar, with its necessarily flavour violating couplings to leptons, lends itself particularly well for an explanation of the Cabibbo Angle Anomaly and of hints for lepton flavour universality violation in $tau to mubar u u$. In a setup addressing both anomalies, we predict loop-induced effects in $tauto egamma$ and in $tau to emumu$. A recast of ATLAS selectron and smuon searches allows us to derive a coupling-independent lower limit of $approx 200$ GeV on the mass of the singly charged singlet scalar. At a future $e^+e^-$ collider, dark matter mono-photon searches could provide a complementary set of bounds.



قيم البحث

اقرأ أيضاً

In recent years, evidence for lepton flavour universality violation beyond the Standard Model has been accumulated. In this context, a singly charged $SU(2)_L$ singlet scalar ($phi^pm$) is very interesting, as it can only have flavour off-diagonal co uplings to neutrinos and charged leptons, therefore necessarily violating lepton flavour (universality). In fact, it gives a (necessarily constructive) tree-level effect in $elltoell^prime u u$ processes, while contributing to charged lepton flavour violating only at the loop-level. Therefore, it can provide a common explanation of the hints for new physics in $tautomu u u/tau(mu)to e u u$ and of the Cabibbo Angle Anomaly. Such an explanation predicts ${rm Br }[tauto egamma]$ to be of the order of a few times $10^{-11}$ while ${ rm Br}[tauto emumu]$ can be of the order of $10^{-9}$ for order one couplings and therefore in the reach of forthcoming experiments. Furthermore, we derive a {novel} coupling-independent lower limit on the scalar mass of $approx 200,$GeV by recasting LHC slepton searches. In the scenario preferred by low energy precision data, the lower limit is even strengthened to $approx300,$GeV, showing the complementary between LHC searches and flavour observables. Furthermore, we point out that this model can be tested by reinterpreting DM mono-photon searches at future $e^+e^-$ colliders.
In addition to the existing strong indications for lepton flavour university violation (LFUV) in low energy precision experiments, CMS recently released an analysis of non-resonant di-lepton pairs which could constitute the first sign of LFUV in high -energy LHC searches. In this article we show that the Cabibbo angle anomaly, an (apparent) violation of first row and column CKM unitarity with $approx3,sigma$ significance, and the CMS result can be correlated and commonly explained in a model independent way by the operator $[Q_{ell q}^{(3)}]_{1111} = (bar{ell}_1gamma^{mu}sigma^Iell_1)(bar{q}_1gamma_{mu}sigma^Iq_1)$. This is possible without violating the bounds from the non-resonant di-lepton search of ATLAS (which interestingly also observed slightly more events than expected in the electron channel) nor from $R(pi)=pi tomu u/pi to e u$. We find a combined preference for the new physics hypothesis of $4.5,sigma$ and predict $1.0004<R(pi)<1.0009$ (95%~CL) which can be tested in the near future with the forthcoming results of the PEN experiment.
143 - A. Lami , J. Portoles 2016
We study Lepton Flavour Violating hadron decays of the tau lepton within the Simplest Little Higgs model. Namely we consider $tau rightarrow mu (P, V, PP)$ where $P$ and $V$ are short for a pseudoscalar and a vector meson. We find that, in the most p ositive scenarios, branching ratios for these processes are predicted to be, at least, four orders of magnitude smaller than present experimental bounds.
We consider a two-Higgs-doublet extension of the Standard Model, with three right-handed neutrino singlets and the seesaw mechanism, wherein all the Yukawa-coupling matrices are lepton flavour-diagonal and lepton flavour violation is soft, originatin g solely in the non-flavour-diagonal Majorana mass matrix of the right-handed neutrinos. We consider the limit $m_R to infty$ of this model, where $m_R$ is the seesaw scale. We demonstrate that there is a region in parameter space where the branching ratios of all five charged-lepton decays $ell_1^- to ell_2^- ell_3^+ ell_3^-$ are close to their experimental upper bounds, while the radiative decays $ell_1^- to ell_2^- gamma$ are invisible because their branching ratios are suppressed by $m_R^{-4}$. We also consider the anomalous magnetic moment of the muon and show that in our model the contributions from the extra scalars, both charged and neutral, can remove the discrepancy between its experimental and theoretical values.
Rare semileptonic $b to s ell^+ ell^-$ transitions provide some of the most promising frameworks to search for new physics effects. Recent analyses of these decays have indicated an anomalous behaviour in measurements of angular distributions of the decay $B^0to K^*mu^+mu^-$ and lepton-flavour-universality observables. Unambiguously establishing if these deviations have a common nature is of paramount importance in order to understand the observed pattern. We propose a novel approach to independently and complementary probe this hypothesis by performing a simultaneous amplitude analysis of $bar{B}^0 to bar{K}^{*0} mu^+mu^-$ and $bar{B}^0 to bar{K}^{*0} e^+e^-$ decays. This method enables the direct determination of observables that encode potential non-equal couplings of muons and electrons, and are found to be insensitive to nonperturbative QCD effects. If current hints of new physics are confirmed, our approach could allow an early discovery of physics beyond the standard model with LHCb run II data sets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا