ﻻ يوجد ملخص باللغة العربية
Observed reddening in the circum-galactic medium (CGM) indicates a significant abundance of small grains, of which the origin is still to be clarified. We examine a possible path of small-grain production through shattering of pre-existing large grains in the CGM. Possible sites where shattering occurs on a reasonable time-scale are cool clumps with hydrogen number density $n_mathrm{H}sim 0.1$ cm$^{-3}$ and gas temperature $T_mathrm{gas}sim 10^4$ K, which are shown to exist through observations of Mg II absorbers. We calculate the evolution of grain size distribution in physical conditions appropriate for cool clumps in the CGM, starting from a large-grain-dominated distribution suggested from theoretical studies. With an appropriate gas turbulence model expected from the physical condition of cold clumps (maximum eddy size and velocity of $sim$100 pc and 10 km s$^{-1}$, respectively), together with the above gas density and temperature and the dust-to-gas mass ratio inferred from observations (0.006), we find that small-grain production occurs on a time-scale (a few $times 10^8$ yr) comparable to the lifetime of cool clumps derived in the literature. Thus, the physical conditions of the cool clouds are favrourable for small-grain production. We also confirm that the reddening becomes significant on the above time-scale. Therefore, we conclude that small-grain production by shattering is a probable cause for the observed reddening in the CGM. We also mention the effect of grain materials (or their mixtures) on the reddening at different redshifts (1 and 2).
We characterize the properties of the intergalactic medium (IGM) around a sample of galaxies extracted from state-of-the-art hydrodynamical simulations of structure formation in a cosmological volume of 25 Mpc comoving at $zsim 2$. The simulations ar
We present simulations of isolated disc galaxies in a realistic environment performed with the Tree-SPMHD-Code Gadget-3. Our simulations include a spherical circum-galactic medium (CGM) surrounding the galactic disc, motivated by observations and the
We explore the survival of cool clouds in multi-phase circum-galactic media. We revisit the cloud crushing problem in a large survey of simulations including radiative cooling, self-shielding, self-gravity, magnetic fields, and anisotropic Braginskii
Gas flows in and out of galaxies through their circumgalactic medium (CGM) are poorly constrained and direct observations of this faint, diffuse medium remain challenging. We use a sample of five $z$ $sim$ 1-2 galaxy counterparts to Damped Lyman-$alp
We study the internal structure of the Circum-Galactic Medium (CGM), using 29 spectra of 13 gravitationally lensed quasars with image separation angles of a few arcseconds, which correspond to 100 pc to 10 kpc in physical distances. After separating