ﻻ يوجد ملخص باللغة العربية
We solve the analysis sparse coding problem considering a combination of convex and non-convex sparsity promoting penalties. The multi-penalty formulation results in an iterative algorithm involving proximal-averaging. We then unfold the iterative algorithm into a trainable network that facilitates learning the sparsity prior. We also consider quantization of the network weights. Quantization makes neural networks efficient both in terms of memory and computation during inference, and also renders them compatible for low-precision hardware deployment. Our learning algorithm is based on a variant of the ADAM optimizer in which the quantizer is part of the forward pass and the gradients of the loss function are evaluated corresponding to the quantized weights while doing a book-keeping of the high-precision weights. We demonstrate applications to compressed image recovery and magnetic resonance image reconstruction. The proposed approach offers superior reconstruction accuracy and quality than state-of-the-art unfolding techniques and the performance degradation is minimal even when the weights are subjected to extreme quantization.
It has recently been observed that certain extremely simple feature encoding techniques are able to achieve state of the art performance on several standard image classification benchmarks including deep belief networks, convolutional nets, factored
We present PrecisionBatching, a quantized inference algorithm for speeding up neural network execution on traditional hardware platforms at low bitwidths without the need for retraining or recalibration. PrecisionBatching decomposes a neural network
In Dictionary Learning one tries to recover incoherent matrices $A^* in mathbb{R}^{n times h}$ (typically overcomplete and whose columns are assumed to be normalized) and sparse vectors $x^* in mathbb{R}^h$ with a small support of size $h^p$ for some
Recovering an underlying image from under-sampled measurements, Compressive Sensing Imaging (CSI) is a challenging problem and has many practical applications. Recently, deep neural networks have been applied to this problem with promising results, o
Recently, the study on learned iterative shrinkage thresholding algorithm (LISTA) has attracted increasing attentions. A large number of experiments as well as some theories have proved the high efficiency of LISTA for solving sparse coding problems.