ﻻ يوجد ملخص باللغة العربية
The noise-enhanced trapping is a surprising phenomenon that has already been studied in chaotic scattering problems where the noise affects the physical variables but not the parameters of the system. Following this research, in this work we provide strong numerical evidence to show that an additional mechanism that enhances the trapping arises when the noise influences the energy of the system. For this purpose, we have included a source of Gaussian white noise in the Henon-Heiles system, which is a paradigmatic example of open Hamiltonian system. For a particular value of the noise intensity, some trajectories decrease their energy due to the stochastic fluctuations. This drop in energy allows the particles to spend very long transients in the scattering region, increasing their average escape times. This result, together with the previously studied mechanisms, points out the generality of the noise-enhanced trapping in chaotic scattering problems.
We show that the presence of KAM islands in nonhyperbolic chaotic scattering has deep implications on the unpredictability of open Hamiltonian systems. When the energy of the system increases the particles escape faster. For this reason the boundary
We study the quantum and classical scattering of Hamiltonian systems whose chaotic saddle is described by binary or ternary horseshoes. We are interested in parameters of the system for which a stable island, associated with the inner fundamental per
The dynamics in three-dimensional billiards leads, using a Poincare section, to a four-dimensional map which is challenging to visualize. By means of the recently introduced 3D phase-space slices an intuitive representation of the organization of the
Exact analytical expressions for the cross-section correlation functions of chaotic scattering sys- tems have hitherto been derived only under special conditions. The objective of the present article is to provide expressions that are applicable beyo
We introduce a new paradigm of 2D (electromagnetic) ray-chaos, featuring both guided and scattered rays in a dielectric layer with exponentially tapered refraction index backed by an undulated conductive surface, and illustrate its relevant features.