ﻻ يوجد ملخص باللغة العربية
Persistence diagrams (PDs) are the most common descriptors used to encode the topology of structured data appearing in challenging learning tasks; think e.g. of graphs, time series or point clouds sampled close to a manifold. Given random objects and the corresponding distribution of PDs, one may want to build a statistical summary-such as a mean-of these random PDs, which is however not a trivial task as the natural geometry of the space of PDs is not linear. In this article, we study two such summaries, the Expected Persistence Diagram (EPD), and its quantization. The EPD is a measure supported on R 2 , which may be approximated by its empirical counterpart. We prove that this estimator is optimal from a minimax standpoint on a large class of models with a parametric rate of convergence. The empirical EPD is simple and efficient to compute, but possibly has a very large support, hindering its use in practice. To overcome this issue, we propose an algorithm to compute a quantization of the empirical EPD, a measure with small support which is shown to approximate with near-optimal rates a quantization of the theoretical EPD.
We consider the estimation of large covariance and precision matrices from high-dimensional sub-Gaussian or heavier-tailed observations with slowly decaying temporal dependence. The temporal dependence is allowed to be long-range so with longer memor
Given $n$ samples from a population of individuals belonging to different types with unknown proportions, how do we estimate the probability of discovering a new type at the $(n+1)$-th draw? This is a classical problem in statistics, commonly referre
We consider a problem of manifold estimation from noisy observations. Many manifold learning procedures locally approximate a manifold by a weighted average over a small neighborhood. However, in the presence of large noise, the assigned weights beco
We undertake a precise study of the non-asymptotic properties of vanilla generative adversarial networks (GANs) and derive theoretical guarantees in the problem of estimating an unknown $d$-dimensional density $p^*$ under a proper choice of the class
Consider the problem of estimating a low-rank matrix when its entries are perturbed by Gaussian noise. If the empirical distribution of the entries of the spikes is known, optimal estimators that exploit this knowledge can substantially outperform si