An automatic system to detect equivalence between iterative algorithms


الملخص بالإنكليزية

When are two algorithms the same? How can we be sure a recently proposed algorithm is novel, and not a minor twist on an existing method? In this paper, we present a framework for reasoning about equivalence between a broad class of iterative algorithms, with a focus on algorithms designed for convex optimization. We propose several notions of what it means for two algorithms to be equivalent, and provide computationally tractable means to detect equivalence. Our main definition, oracle equivalence, states that two algorithms are equivalent if they result in the same sequence of calls to the function oracles (for suitable initialization). Borrowing from control theory, we use state-space realizations to represent algorithms and characterize algorithm equivalence via transfer functions. Our framework can also identify and characterize some algorithm transformations including permutations of the update equations, repetition of the iteration, and conjugation of some of the function oracles in the algorithm. To support the paper, we have developed a software package named Linnaeus that implements the framework to identify other iterative algorithms that are equivalent to an input algorithm. More broadly, this framework and software advances the goal of making mathematics searchable.

تحميل البحث