ﻻ يوجد ملخص باللغة العربية
The three-dimensional Klein-Gordon oscillator is shown to exhibit an algebraic structure known from supersymmetric quantum mechanics. The supersymmetry is found to be unbroken with a vanishing Witten index, and it is utilized to derive the spectral properties of the Klein-Gordon oscillator, which is closely related to that of the non-relativistic harmonic oscillator in three dimensions. Supersymmetry also enables us to derive a closed-form expression for the energy-dependent Greens function.
We consider the spectral problem associated with the Klein-Gordon equation for unbounded electric potentials. If the spectrum of this problem is contained in two disjoint real intervals and the two inner boundary points are eigenvalues, we show that
We present an elementary proof based on a direct calculation of the property of completeness at constant time of the solutions of the Klein-Gordon equation for a charged particle in a plane wave electromagnetic field. We also review different forms o
The dynamical symmetries of the two-dimensional Klein-Gordon equations with equal scalar and vector potentials (ESVP) are studied. The dynamical symmetries are considered in the plane and the sphere respectively. The generators of the SO(3) group cor
Essentially generalizing Lies results, we prove that the contact equivalence groupoid of a class of (1+1)-dimensional generalized nonlinear Klein-Gordon equations is the first-order prolongation of its point equivalence groupoid, and then we carry ou
We revise the unireps. of $U(2,2)$ describing conformal particles with continuous mass spectrum from a many-body perspective, which shows massive conformal particles as compounds of two correlated massless particles. The statistics of the compound (b