ترغب بنشر مسار تعليمي؟ اضغط هنا

The Sloan Digital Sky Survey Reverberation Mapping Project: UV-Optical Accretion Disk Measurements with Hubble Space Telescope

137   0   0.0 ( 0 )
 نشر من قبل Yasaman Homayouni
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present accretion-disk structure measurements from UV-optical reverberation mapping observations of a sample of eight quasars at 0.24<z<0.85. Ultraviolet photometry comes from two cycles of Hubble Space Telescope monitoring, accompanied by multi-band optical monitoring by the Las Cumbres Observatory network and Liverpool Telescopes. The targets were selected from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project sample with reliable black-hole mass measurements from Hbeta reverberation mapping results. We measure significant lags between the UV and various optical griz bands using JAVELIN and CREAM methods. We use the significant lag results from both methods to fit the accretion-disk structure using a Markov chain Monte Carlo approach. We study the accretion disk as a function of disk normalization, temperature scaling, and efficiency. We find direct evidence for diffuse nebular emission from Balmer and FeII lines over discrete wavelength ranges. We also find that our best-fit disk color profile is broadly consistent with the Shakura & Sunyaev disk model. We compare our UV-optical lags to the disk sizes inferred from optical-optical lags of the same quasars and find that our results are consistent with these quasars being drawn from a limited high-lag subset of the broader population. Our results are therefore broadly consistent with models that suggest longer disk lags in a subset of quasars, for example, due to a nonzero size of the ionizing corona and/or magnetic heating contributing to the disk response.



قيم البحث

اقرأ أيضاً

We present accretion-disk structure measurements from continuum lags in the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Lags are measured using the texttt{JAVELIN} software from the first-year SDSS-RM $g$ and $i$ photometry, res ulting in well-defined lags for 95 quasars, 33 of which have lag SNR $>$ 2$sigma$. We also estimate lags using the texttt{ICCF} software and find consistent results, though with larger uncertainties. Accretion-disk structure is fit using a Markov Chain Monte Carlo approach, parameterizing the measured continuum lags as a function of disk size normalization, wavelength, black hole mass, and luminosity. In contrast with previous observations, our best-fit disk sizes and color profiles are consistent (within 1.5~$sigma$) with the citet{SS73} analytic solution. We also find that more massive quasars have larger accretion disks, similarly consistent with the analytic accretion-disk model. The data are inconclusive on a correlation between disk size and continuum luminosity, with results that are consistent with both no correlation and with the citet{SS73} expectation. The continuum lag fits have a large excess dispersion, indicating that our measured lag errors are underestimated and/or our best-fit model may be missing the effects of orientation, spin, and/or radiative efficiency. We demonstrate that fitting disk parameters using only the highest-SNR lag measurements biases best-fit disk sizes to be larger than the disk sizes recovered using a Bayesian approach on the full sample of well-defined lags.
The Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM) is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg$^2$ field with the SDSS-III BOSS spectrograph. Th e RM quasar sample is flux-limited to i_psf=21.7 mag, and covers a redshift range of 0.1<z<4.5. Optical spectroscopy was performed during 2014 Jan-Jul dark/grey time, with an average cadence of ~4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bands was conducted at multiple facilities including the CFHT and the Steward Observatory Bok telescopes in 2014, with a cadence of ~2 days and covering all lunar phases. The RM field (RA, DEC=14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM 6-month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ~10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z>0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.
We present a detailed characterization of the 849 broad-line quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Our quasar sample covers a redshift range of 0.1<z<4.5 and is flux-limited to i_PSF<21.7 without any other cuts on quasar properties. The main sample characterization includes: 1) spectral measurements of the continuum and broad emission lines for individual objects from the coadded first-season spectroscopy in 2014; 2) identification of broad and narrow absorption lines in the spectra; 3) optical variability properties for continuum and broad lines from multi-epoch spectroscopy. We provide improved systemic redshift estimates for all quasars, and demonstrate the effects of signal-to-noise ratio on the spectral measurements. We compile measured properties for all 849 quasars along with supplemental multi-wavelength data for subsets of our sample from other surveys. The SDSS-RM sample probes a diverse range in quasar properties, and shows well detected continuum and broad-line variability for many objects from first-season monitoring data. The compiled properties serve as the benchmark for follow-up work based on SDSS-RM data. The spectral fitting tools are made public along with this work.
We present composite broad-line region (BLR) reverberation-mapping lag measurements for halpha, hbeta, HeII,$lambda4686$ and MgII for a sample of 144, $zlesssim 1$ quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Usi ng only the 32-epoch spectroscopic light curves in the first 6-month season of SDSS-RM observations, we compile correlation-function measurements for individual objects and then coadd them to allow the measurement of the average lags for our sample at mean redshifts of $0.4$ (for halpha) and $sim 0.65$ (for the other lines). At similar quasar luminosities and redshifts, the sample-averaged lag decreases in the order of MgII, halpha, hbeta and HeII. This decrease in lags is accompanied by an increase in the mean line width of the four lines, and is roughly consistent with the virialized motion for BLR gas in photoionization equilibrium. These are among the first RM measurements of stratified BLR structure at $z>0.3$. Dividing our sample by luminosity, halpha shows clear evidence of increasing lags with luminosity, consistent with the expectation from the measured BLR size-luminosity relation based on hbeta. The other three lines do not show a clear luminosity trend in their average lags due to the limited dynamic range of luminosity probed and the poor average correlation signals in the divided samples, a situation that will be improved with the incorporation of additional photometric and spectroscopic data from SDSS-RM. We discuss the utility and caveats of composite-lag measurements for large statistical quasar samples with reverberation-mapping data.
Results from a few decades of reverberation mapping (RM) studies have revealed a correlation between the radius of the broad-line emitting region (BLR) and the continuum luminosity of active galactic nuclei. This radius-luminosity relation enables su rvey-scale black-hole mass estimates across cosmic time, using relatively inexpensive single-epoch spectroscopy, rather than intensive RM time monitoring. However, recent results from newer reverberation mapping campaigns challenge this widely used paradigm, reporting quasar BLR sizes that differ significantly from the previously established radius-luminosity relation. Using simulations of the radius--luminosity relation with the observational parameters of SDSS-RM, we find that this difference is not likely due to observational biases. Instead, it appears that previous RM samples were biased to a subset of quasar properties, and the broader parameter space occupied by the SDSS-RM quasar sample has a genuinely wider range of BLR sizes. We examine the correlation between the deviations from the radius-luminosity relation and several quasar parameters; the most significant correlations indicate that the deviations depend on UV/optical SED and the relative amount of ionizing radiation. Our results indicate that single-epoch black-hole mass estimates that do not account for the diversity of quasars in the radius-luminosity relation could be overestimated by an average of ~0.3 dex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا