A Metamodel Structure For Regression Analysis: Application To Prediction Of Autism Spectrum Disorder Severity


الملخص بالإنكليزية

Traditional regression models do not generalize well when learning from small and noisy datasets. Here we propose a novel metamodel structure to improve the regression result. The metamodel is composed of multiple classification base models and a regression model built upon the base models. We test this structure on the prediction of autism spectrum disorder (ASD) severity as measured by the ADOS communication (ADOS COMM) score from resting-state fMRI data, using a variety of base models. The metamodel outperforms traditional regression models as measured by the Pearson correlation coefficient between true and predicted scores and stability. In addition, we found that the metamodel is more flexible and more generalizable.

تحميل البحث