ﻻ يوجد ملخص باللغة العربية
We study the average quantum coherence over the pure state decompositions of a mixed quantum state. An upper bound of the average quantum coherence is provided and sufficient conditions for the saturation of the upper bound are shown. These sufficient conditions always hold for two and three dimensional systems. This provides a tool to estimate the average coherence experimentally by measuring only the diagonal elements, which remarkably requires less measurements compared with state tomography. We then describe the pure state decompositions of qubit state in Bloch sphere geometrically. For any given qubit state, the optimal pure state decomposition achieving the maximal average quantum coherence as well as three other pure state decompositions are shown in the Bloch sphere. The order relations among their average quantum coherence are invariant for any coherence measure. The results presented in this paper are universal and suitable for all coherence measures.
Quantifying quantum coherence is a key task in the resource theory of coherence. Here we establish a good coherence monotone in terms of a state conversion process, which automatically endows the coherence monotone with an operational meaning. We sho
In the task of discriminating between nonorthogonal quantum states from multiple copies, the key parameters are the error probability and the resources (number of copies) used. Previous studies have considered the task of minimizing the average error
It is well known that the Schmidt decomposition exists for all pure states of a two-party quantum system. We demonstrate that there are two ways to obtain an analogous decomposition for arbitrary rank-1 operators acting on states of a bipartite finit
Quantum entanglement and coherence are two fundamental resources for quantum information processing. Recent results clearly demonstrate their relevance in quantum technological tasks, including quantum communication and quantum algorithms. In this Le
We study the remote creation of the polarization and intensity of the first-order coherence (or coherence intensity) in long spin-1/2 chains with one qubit sender and receiver. Therewith we use a physically motivated initial condition with the pure s