ﻻ يوجد ملخص باللغة العربية
Permalloy Ni$_{80}$Fe$_{20}$ is one of the key magnetic materials in the field of magnonics. Its potential would be further unveiled if it could be deposited in three dimensional (3D) architectures of sizes down to the nanometer. Atomic Layer Deposition, ALD, is the technique of choice for covering arbitrary shapes with homogeneous thin films. Early successes with ferromagnetic materials include nickel and cobalt. Still, challenges in depositing ferromagnetic alloys reside in the synthesis via decomposing the consituent elements at the same temperature and homogeneously. We report plasma-enhanced ALD to prepare permalloy Ni$_{80}$Fe$_{20}$ thin films and nanotubes using nickelocene and iron(III) tert-butoxide as metal precursors, water as the oxidant agent and an in-cycle plasma enhanced reduction step with hydrogen. We have optimized the ALD cycle in terms of Ni:Fe atomic ratio and functional properties. We obtained a Gilbert damping of 0.013, a resistivity of 28 $muOmega$cm and an anisotropic magnetoresistance effect of 5.6 $%$ in the planar thin film geometry. We demonstrate that the process also works for covering GaAs nanowires, resulting in permalloy nanotubes with high aspect ratios and diameters of about 150 nm. Individual nanotubes were investigated in terms of crystal phase, composition and spin-dynamic response by microfocused Brillouin Light Scattering. Our results enable NiFe-based 3D spintronics and magnonic devices in curved and complex topology operated in the GHz frequency regime.
Despite its interest for CMOS applications, Atomic Layer Deposition (ALD) of GeO$_{2}$ thin films, by itself or in combination with SiO$_{2}$, has not been widely investigated yet. Here we report the ALD growth of SiO$_{2}$/GeO$_{2}$ multilayers on S
Despite many efforts the origin of a ferromagnetic (FM) response in ZnMnO and ZnCoO is still not clear. Magnetic investigations of our samples, not discussed here, show that the room temperature FM response is observed only in alloys with a non-unifo
Heteroepitaxial growth of selected group IV-VI nitrides on various orientations of sapphire (alpha-Al2O3) is demonstrated using atomic layer deposition. High quality, epitaxial films are produced at significantly lower temperatures than required by c
SrIrO$_3$ with its large spin-orbit coupling and low charge conductivity has emerged as a potential candidate for efficient spin-orbit torque magnetization control in spintronic devices. We here report on the influence of an interfacial oxide layer o
The preparation in thin film form of the known icosahedral phase in Ti-Ni-Zr bulk alloys has been investigated as a function of substrate temperature. Films were deposited by Pulsed Laser Deposition on sapphire substrates at temperatures ranging from