ﻻ يوجد ملخص باللغة العربية
We consider a two-stage stochastic optimization problem, in which a long-term optimization variable is coupled with a set of short-term optimization variables in both objective and constraint functions. Despite that two-stage stochastic optimization plays a critical role in various engineering and scientific applications, there still lack efficient algorithms, especially when the long-term and short-term variables are coupled in the constraints. To overcome the challenge caused by tightly coupled stochastic constraints, we first establish a two-stage primal-dual decomposition (PDD) method to decompose the two-stage problem into a long-term problem and a family of short-term subproblems. Then we propose a PDD-based stochastic successive convex approximation (PDD-SSCA) algorithmic framework to find KKT solutions for two-stage stochastic optimization problems. At each iteration, PDD-SSCA first runs a short-term sub-algorithm to find stationary points of the short-term subproblems associated with a mini-batch of the state samples. Then it constructs a convex surrogate for the long-term problem based on the deep unrolling of the short-term sub-algorithm and the back propagation method. Finally, the optimal solution of the convex surrogate problem is solved to generate the next iterate. We establish the almost sure convergence of PDD-SSCA and customize the algorithmic framework to solve two important application problems. Simulations show that PDD-SSCA can achieve superior performance over existing solutions.
We consider a generic empirical composition optimization problem, where there are empirical averages present both outside and inside nonlinear loss functions. Such a problem is of interest in various machine learning applications, and cannot be direc
In this paper, we consider multi-stage stochastic optimization problems with convex objectives and conic constraints at each stage. We present a new stochastic first-order method, namely the dynamic stochastic approximation (DSA) algorithm, for solvi
This paper investigates the problem of regulating in real time a linear dynamical system to the solution trajectory of a time-varying constrained convex optimization problem. The proposed feedback controller is based on an adaptation of the saddle-fl
This paper studies the distributed optimization problem where the objective functions might be nondifferentiable and subject to heterogeneous set constraints. Unlike existing subgradient methods, we focus on the case when the exact subgradients of th
We lower bound the complexity of finding $epsilon$-stationary points (with gradient norm at most $epsilon$) using stochastic first-order methods. In a well-studied model where algorithms access smooth, potentially non-convex functions through queries