ترغب بنشر مسار تعليمي؟ اضغط هنا

End-to-end One-shot Human Parsing

81   0   0.0 ( 0 )
 نشر من قبل Bohan Zhuang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous human parsing models are limited to parsing humans into pre-defined classes, which is inflexible for applications that need to handle new classes. In this paper, we define a new one-shot human parsing (OSHP) task that requires parsing humans into an open set of classes defined by any test example. During training, only base classes are exposed, which only overlap with part of test-time classes. To address three main challenges in OSHP, i.e., small sizes, testing bias, and similar parts, we devise a novel End-to-end One-shot human Parsing Network (EOP-Net). Firstly, an end-to-end human parsing framework is proposed to mutually share semantic information with different granularities and help recognize the small-size human classes. Then, we devise two collaborative metric learning modules to learn representative prototypes for base classes, which can quickly adapt to unseen classes and mitigate the testing bias. Moreover, we empirically find that robust prototypes empower feature representations with higher transferability to the novel concepts, hence, we propose to adopt momentum-updated dynamic prototypes generated by gradually smoothing the training time prototypes and employ contrastive loss at the prototype level. Experiments on three popular benchmarks tailored for OSHP demonstrate that EOP-Net outperforms representative one-shot segmentation models by large margins, which serves as a strong benchmark for further research on this new task. The source code will be made publicly available.



قيم البحث

اقرأ أيضاً

Contemporary state-of-the-art approaches to Zero-Shot Learning (ZSL) train generative nets to synthesize examples conditioned on the provided metadata. Thereafter, classifiers are trained on these synthetic data in a supervised manner. In this work, we introduce Z2FSL, an end-to-end generative ZSL framework that uses such an approach as a backbone and feeds its synthesized output to a Few-Shot Learning (FSL) algorithm. The two modules are trained jointly. Z2FSL solves the ZSL problem with a FSL algorithm, reducing, in effect, ZSL to FSL. A wide class of algorithms can be integrated within our framework. Our experimental results show consistent improvement over several baselines. The proposed method, evaluated across standard benchmarks, shows state-of-the-art or competitive performance in ZSL and Generalized ZSL tasks.
166 - Cheng Zou , Bohan Wang , Yue Hu 2021
We propose HOI Transformer to tackle human object interaction (HOI) detection in an end-to-end manner. Current approaches either decouple HOI task into separated stages of object detection and interaction classification or introduce surrogate interac tion problem. In contrast, our method, named HOI Transformer, streamlines the HOI pipeline by eliminating the need for many hand-designed components. HOI Transformer reasons about the relations of objects and humans from global image context and directly predicts HOI instances in parallel. A quintuple matching loss is introduced to force HOI predictions in a unified way. Our method is conceptually much simpler and demonstrates improved accuracy. Without bells and whistles, HOI Transformer achieves $26.61% $ $ AP $ on HICO-DET and $52.9%$ $AP_{role}$ on V-COCO, surpassing previous methods with the advantage of being much simpler. We hope our approach will serve as a simple and effective alternative for HOI tasks. Code is available at https://github.com/bbepoch/HoiTransformer .
Human-Object Interaction (HOI) detection is a task of identifying a set of interactions in an image, which involves the i) localization of the subject (i.e., humans) and target (i.e., objects) of interaction, and ii) the classification of the interac tion labels. Most existing methods have indirectly addressed this task by detecting human and object instances and individually inferring every pair of the detected instances. In this paper, we present a novel framework, referred to by HOTR, which directly predicts a set of <human, object, interaction> triplets from an image based on a transformer encoder-decoder architecture. Through the set prediction, our method effectively exploits the inherent semantic relationships in an image and does not require time-consuming post-processing which is the main bottleneck of existing methods. Our proposed algorithm achieves the state-of-the-art performance in two HOI detection benchmarks with an inference time under 1 ms after object detection.
112 - Yanyan Zou , Wei Lu 2019
We propose Text2Math, a model for semantically parsing text into math expressions. The model can be used to solve different math related problems including arithmetic word problems and equation parsing problems. Unlike previous approaches, we tackle the problem from an end-to-end structured prediction perspective where our algorithm aims to predict the complete math expression at once as a tree structure, where minimal manual efforts are involved in the process. Empirical results on benchmark datasets demonstrate the efficacy of our approach.
Recent years, human-object interaction (HOI) detection has achieved impressive advances. However, conventional two-stage methods are usually slow in inference. On the other hand, existing one-stage methods mainly focus on the union regions of interac tions, which introduce unnecessary visual information as disturbances to HOI detection. To tackle the problems above, we propose a novel one-stage HOI detection approach DIRV in this paper, based on a new concept called interaction region for the HOI problem. Unlike previous methods, our approach concentrates on the densely sampled interaction regions across different scales for each human-object pair, so as to capture the subtle visual features that is most essential to the interaction. Moreover, in order to compensate for the detection flaws of a single interaction region, we introduce a novel voting strategy that makes full use of those overlapped interaction regions in place of conventional Non-Maximal Suppression (NMS). Extensive experiments on two popular benchmarks: V-COCO and HICO-DET show that our approach outperforms existing state-of-the-arts by a large margin with the highest inference speed and lightest network architecture. We achieved 56.1 mAP on V-COCO without addtional input. Our code is publicly available at: https://github.com/MVIG-SJTU/DIRV
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا