Low-energy dynamics of many-body fracton excitations necessary to describe topological defects should be governed by a novel type of hydrodynamic theory. We use a Poisson bracket approach to systematically derive hydrodynamic equations from conservation laws of scalar theories with fracton excitations. We study two classes of theories. In the first class we introduce a general action for a scalar with a shift symmetry linear in the spatial coordinates, while the second class serves as a toy model for disclinations and dislocations propagating along the Burgers vector. We apply our construction to study hydrodynamic fluctuations around equilibrium states and derive the dispersion relations of hydrodynamic modes.