ﻻ يوجد ملخص باللغة العربية
Proposed approaches to topological quantum computation based on Majorana bound states may enable new paths to fault-tolerant quantum computing. Several recent experiments have suggested that the vortex cores of topological superconductors, such as iron-based superconductors, may host Majorana bound states at zero energy. To facilitate quantum computation with these zero-energy vortex bound states, a precise and fast manipulation of individual vortices is crucial. However, handling individual vortices remains a challenge, and a theoretical framework for describing individually controlled vortex motion is still critically needed. We propose a scheme for the use of local heating based on scanning optical microscopy to manipulate Majorana bound states emergent in the vortex cores of topological superconductors. Specifically, we derive the conditions required for transporting a single vortex between two stationary defects in the superconducting material by trapping it with a hot spot generated by local optical heating. Using these critical conditions for the vortex motion, we then establish the ideal material properties for the implementation of our manipulation scheme, which paves the way toward the controllable handling of zero-energy vortex bound states.
Optical control of chirality in chiral superconductors bears potential for future topological quantum computing applications. When a chiral domain is written and erased by a laser spot, the Majorana modes around the domain can be manipulated on ultra
Majorana fermions feature non-Abelian exchange statistics and promise fascinating applications in topological quantum computation. Recently, second-order topological superconductors (SOTSs) have been proposed to host Majorana fermions as localized qu
Quantum anomalous Hall insulator/superconductor heterostructures emerged as a competitive platform to realize topological superconductors with chiral Majorana edge states as shown in recent experiments [He et al. Science {bf 357}, 294 (2017)]. Howeve
We present a pedagogical review of topological superconductivity and its consequences in spin-orbit coupled semiconductor/superconductor heterostructures. We start by reviewing the historical origins of the notions of Dirac and Majorana fermions in particle physics and discuss how lower dimension
Magnetic field can penetrate into type-II superconductors in the form of Abrikosov vortices, which are magnetic flux tubes surrounded by circulating supercurrents often trapped at defects referred to as pinning sites. Although the average properties