By generalizing our automated algebra approach from homogeneous space to harmonically trapped systems, we have calculated the fourth- and fifth-order virial coefficients of universal spin-1/2 fermions in the unitary limit, confined in an isotropic harmonic potential. We present results for said coefficients as a function of trapping frequency (or, equivalently, temperature), which compare favorably with previous Monte Carlo calculations (available only at fourth order) as well as with our previous estimates in the untrapped limit (high temperature, low frequency). We use our estimates of the virial expansion, together with resummation techniques, to calculate the compressibility and spin susceptibility.