ﻻ يوجد ملخص باللغة العربية
Intelligent task placement and management of tasks in large-scale fog platforms is challenging due to the highly volatile nature of modern workload applications and sensitive user requirements of low energy consumption and response time. Container orchestration platforms have emerged to alleviate this problem with prior art either using heuristics to quickly reach scheduling decisions or AI driven methods like reinforcement learning and evolutionary approaches to adapt to dynamic scenarios. The former often fail to quickly adapt in highly dynamic environments, whereas the latter have run-times that are slow enough to negatively impact response time. Therefore, there is a need for scheduling policies that are both reactive to work efficiently in volatile environments and have low scheduling overheads. To achieve this, we propose a Gradient Based Optimization Strategy using Back-propagation of gradients with respect to Input (GOBI). Further, we leverage the accuracy of predictive digital-twin models and simulation capabilities by developing a Coupled Simulation and Container Orchestration Framework (COSCO). Using this, we create a hybrid simulation driven decision approach, GOBI*, to optimize Quality of Service (QoS) parameters. Co-simulation and the back-propagation approaches allow these methods to adapt quickly in volatile environments. Experiments conducted using real-world data on fog applications using the GOBI and GOBI* methods, show a significant improvement in terms of energy consumption, response time, Service Level Objective and scheduling time by up to 15, 40, 4, and 82 percent respectively when compared to the state-of-the-art algorithms.
Fog/Edge computing model allows harnessing of resources in the proximity of the Internet of Things (IoT) devices to support various types of real-time IoT applications. However, due to the mobility of users and a wide range of IoT applications with d
Internet of Things (IoT) has already proven to be the building block for next-generation Cyber-Physical Systems (CPSs). The considerable amount of data generated by the IoT devices needs latency-sensitive processing, which is not feasible by deployin
The development of cost-effective highperformance parallel computing on multi-processor supercomputers makes it attractive to port excessively time consuming simulation software from personal computers (PC) to super computes. The power distribution s
Edge computing has been developed to utilize multiple tiers of resources for privacy, cost and Quality of Service (QoS) reasons. Edge workloads have the characteristics of data-driven and latency-sensitive. Because of this, edge systems have develope
In the past decade, we have witnessed a dramatically increasing volume of data collected from varied sources. The explosion of data has transformed the world as more information is available for collection and analysis than ever before. To maximize t