ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the feasibility and physical consequences of cyber attacks against energy management systems (EMS). Within this framework, we have designed a complete simulation platform to emulate realistic EMS operations: it includes state estimation (SE), real-time contingency analysis (RTCA), and security constrained economic dispatch (SCED). This software platform allowed us to achieve two main objectives: 1) to study the cyber vulnerabilities of an EMS and understand their consequences on the system, and 2) to formulate and implement countermeasures against cyber-attacks exploiting these vulnerabilities. Our results show that the false data injection attacks against state estimation described in the literature do not easily cause base-case overflows because of the conservatism introduced by RTCA. For a successful attack, a more sophisticated model that includes all of the EMS blocks is needed; even in this scenario, only post-contingency violations can be achieved. Nonetheless, we propose several countermeasures that can detect changes due to cyber-attacks and limit their impact on the system.
Cyber-physical attacks impose a significant threat to the smart grid, as the cyber attack makes it difficult to identify the actual damage caused by the physical attack. To defend against such attacks, various inference-based solutions have been prop
Designing resilient control strategies for mitigating stealthy attacks is a crucial task in emerging cyber-physical systems. In the design of anomaly detectors, it is common to assume Gaussian noise models to maintain tractability; however, this assu
We introduce the problem of learning-based attacks in a simple abstraction of cyber-physical systems---the case of a discrete-time, linear, time-invariant plant that may be subject to an attack that overrides the sensor readings and the controller ac
This paper models a class of hierarchical cyber-physical systems and studies its associated consensus problem. The model has a pyramid structure, which reflects many realistic natural or human systems. By analyzing the spectrum of the coupling matrix
Cyber-Physical Systems (CPS) are present in many settings addressing a myriad of purposes. Examples are Internet-of-Things (IoT) or sensing software embedded in appliances or even specialised meters that measure and respond to electricity demands in