ﻻ يوجد ملخص باللغة العربية
We propose an improvement of the random spreading approach with polar codes for unsourced multiple access. Each user encodes its message by a polar code, and the coded bits are then spread using a random spreading sequence. The proposed approach divides the active users into different groups, and employs different power levels for each group in such a way that the average power constraint is satisfied. We formulate and solve an optimization problem to determine the number of groups, and the number of users and power level of each group. Extensive simulations show that the proposed approach outperforms the existing methods, especially when the number of active users is large.
The unsourced MAC model was originally introduced to study the communication scenario in which a number of devices with low-complexity and low-energy wish to upload their respective messages to a base station. In the original problem formulation, all
This paper investigates the issue of cooperative activity detection for grant-free random access in the sixth-generation (6G) cell-free wireless networks with sourced and unsourced paradigms. First, we propose a cooperative framework for solving the
Motivated by the analogy between successive interference cancellation and iterative belief-propagation on erasure channels, irregular repetition slotted ALOHA (IRSA) strategies have received a lot of attention in the design of medium access control p
Spectral efficiency for asynchronous code division multiple access (CDMA) with random spreading is calculated in the large system limit allowing for arbitrary chip waveforms and frequency-flat fading. Signal to interference and noise ratios (SINRs) f
Totally asynchronous code-division multiple-access (CDMA) systems are addressed. In Part I, the fundamental limits of asynchronous CDMA systems are analyzed in terms of spectral efficiency and SINR at the output of the optimum linear detector. The fo