ﻻ يوجد ملخص باللغة العربية
In addition to the high cost and complex setup, the main reason for the limitation of the three-dimensional (3D) display is the problem of accurately estimating the users current point-of-gaze (PoG) in a 3D space. In this paper, we present a novel noncontact technique for the PoG estimation in a stereoscopic environment, which integrates a 3D stereoscopic display system and an eye-tracking system. The 3D stereoscopic display system can provide users with a friendly and immersive high-definition viewing experience without wearing any equipment. To accurately locate the users 3D PoG in the field of view, we build a regression-based 3D eye-tracking model with the eye movement data and stereo stimulus videos as input. Besides, to train an optimal regression model, we also design and annotate a dataset that contains 30 users eye-tracking data corresponding to two designed stereo test scenes. Innovatively, this dataset introduces feature vectors between eye region landmarks for the gaze vector estimation and a combined feature set for the gaze depth estimation. Moreover, five traditional regression models are trained and evaluated based on this dataset. Experimental results show that the average errors of the 3D PoG are about 0.90~cm on the X-axis, 0.83~cm on the Y-axis, and 1.48~cm$/$0.12~m along the Z-axis with the scene-depth range in 75~cm$/$8~m, respectively.
Drones, or general UAVs, equipped with a single camera have been widely deployed to a broad range of applications, such as aerial photography, fast goods delivery and most importantly, surveillance. Despite the great progress achieved in computer vis
Mutual gaze detection, i.e., predicting whether or not two people are looking at each other, plays an important role in understanding human interactions. In this work, we focus on the task of image-based mutual gaze detection, and propose a simple an
Appearance-based gaze estimation has achieved significant improvement by using deep learning. However, many deep learning-based methods suffer from the vulnerability property, i.e., perturbing the raw image using noise confuses the gaze estimation mo
Localizing stereo boundaries and predicting nearby disparities are difficult because stereo boundaries induce occluded regions where matching cues are absent. Most modern computer vision algorithms treat occlusions secondarily (e.g., via left-right c
3D detection plays an indispensable role in environment perception. Due to the high cost of commonly used LiDAR sensor, stereo vision based 3D detection, as an economical yet effective setting, attracts more attention recently. For these approaches b